簡易檢索 / 詳目顯示

研究生: 楊沛翰
Yang, Pei-Han
論文名稱: 對位聚苯乙烯結晶前形態之研究
Morphological studies of syndiotactic polystyrene before its crystallization
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 155
中文關鍵詞: 對排聚苯乙烯SD型相分離time-resolved FTIR
外文關鍵詞: syndiotactic polystyrene, SD phase separation, time-resolved FTIR
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究觀察melt-quenched sPS薄膜在結晶前的液-液相分離行為(包括動態結晶以及等溫結晶),實驗上以OM搭配phase contrast鏡頭實際觀測相分離結構,藉由小角度光散射法拍攝Hv影像判斷結晶的時刻,Hv除了可以判斷球晶尺寸外,也可積分得散射不變量QHv以探討晶體的體積分率。以FTIR結合加熱裝置,搭配timebase軟體,形成一組time-resolved FTIR,探討等溫結晶、動態結晶之結晶行為,以及結晶前的微結構變化。

    在10 oC/min升溫的動態結晶中,實驗顯示相分離往往都是在晶體生成後,對比增加了,才得以被觀察到,且當相對結晶度達90%時,晶體會由深色domain跨到鄰近的淺色domain內,降低對比,另外在晶體開始熔化時,相分離結構的對比又開始增加,使相連結構又再次出現,換句話說,melt-quenched薄膜升溫時有兩種機制同時存在,液-液相分離以及液-固結晶。此外,在等溫結晶實驗中,可觀測到結晶前的光強度皆以對數的形式增加,並且在110 oC的等溫結晶實驗中,可以藉由phase contrast鏡頭觀測到結晶前的相分離行為。本實驗也嘗試以未安裝檢光板的SALS來觀測相分離,但由於相分離對比太弱,因而無法觀測到相分離產生的ring structure。

    在1 oC/min升溫的動態結晶中,亦可觀測到結晶前的相分離行為,有趣的是,在晶體消失後,相分離結構並不會馬上消失,可知單成份高分子sPS在結晶前確實會先形成類似SD型的相分離。

    Liquid-liquid phase separation preceding the crystallization of melt-quenched syndiotactic polystyrene (sPS) film upon dynamic crystallization and isothermal crystallization was observed via OM with phase contrast lens. Hv images of SALS were used to detect cystallization. In addition to the scattering peak for determining the spherulitic size, the integrated scattering intensity, invariant QHv, was capable to probe the volume fraction of spherulites. The crystallization and conformational change of the sample during heating could also be monitored by time-resolved FTIR.

    From dynamic crystallization with a heating rate of 10 oC/min, it was showed that the phase-separation contrast was too low to observe morphological features under OM until crystallization was took place. While the relative crystallinity was about 90 %, the growing crystals spread across the phase boundary, so the interconnected domains were hardly discernible. However, the phase-separation contrast increased again and interconnected domains appeared when crystals started to melt. In other words, there were two kinds of phase transition, i.e., liquid-liquid phase separation and liquid-solid crystallization. Besides, the logarithmic increase of Hv intensities could be observed in the induction period from isothermal crystallization. Our results showed that the interconnected domains preceding crystallization could be clearly seen from isothermal crystallization at 110 oC. We also tried to observe the phase separation by using SALS without analyzer. But, the phase contrast was too low to detect the phase-separated structure and no ring pattern was seen.

    From dynamic crystallization with a heating rate of 1 oC/min, the interconnected domains preceding crystallization was also observable. Interestingly, the interconnected domains did not immediately disappear when all crystals were melted. In a nutshell, phase separation induced by SD in single component sPS really took place prior to the formation of stable nuclei.

    摘要……i Abstract…ii 致謝……………iv 目錄…………vi 表目錄…viii 圖目錄…ix 符號……xv ㄧ、前言……1 二、簡介……2 三、文獻回顧……3 3.1 對排聚苯乙烯 (syndiotactic polystyrene,sPS)……3 3.2 相分離 (phase separation)……5 3.3 原位即時傅立葉轉換光譜儀 (in-situ FTIR)……6 四、理論……17 4.1 Kinetics of phase separation……17 4.2 SALS理論……17 五、實驗……27 5.1 實驗藥品……27 5.2 實驗器材與儀器……27 5.3 實驗步驟……29 5.3.1 sPS薄膜的製備……29 5.3.2 melt-quenched薄膜製備……29 5.3.3 示差掃描熱卡計 (DSC)……29 5.3.4 光學顯微鏡 (OM)……30 5.3.5 快速傅立葉轉換 (fast Fourier transform, FFT)……31 5.3.6 傅立葉紅外線光譜儀 (FTIR)……31 5.3.7 小角度光散射 (SALS)……33 六、結果與討論……38 6.1 以FTIR分析melt-quenched sPS薄膜……38 6.2 動態結晶研究……39 6.3 以SALS研究動態結晶……41 6.3.1 以10 oC/min升溫……41 6.3.2 以1 oC/min升溫……43 6.4 等溫結晶研究……45 6.4.1 SALS部分……45 6.4.2 動態FTIR部分……46 6.4.3 結晶前的SD相分離行為……48 七、結論……109 八、參考文獻……110 九、附錄……116

    [1] J. Natta, “Une nouvelle classe de polymeres d' -olefines ayant une regularite de structure exceptionnelle”, J. Polym. Sci. 16, 143 (1955).
    [2] N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, “Crystalline syndiotactic polystyrene”, Macromolecules 19, 2464 (1986).
    [3] G. Guerra, V. M. Vitagliano, C. De Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples”, Macromolecules 23, 1539 (1990).
    [4] A. M. Evans, E. J. C. Kellar, J. Knowles, C . Galiotis, C. J.Carriere and E. H. Andrews, “The structure and morphology of syndiotactic polystyrene injection molded coupons”, Polym. Eng. Sci. 37, 153 (1997).
    [5] E.J.C. Kellar, C. Galiotis, and E.H. Andrews, “Raman vibrational studies of syndiotactic polystyrene. 1. Assignments in a conformational/crystallinity sensitive spectral region”, Macromolecules 29, 3515 (1996).
    [6] F. Auriemma, V. Petraccone, et al., “Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal (alpha) crystalline form”, Macromolecules 26, 3772 (1993).
    [7] J. Arnauts, H. Berghmans, “Equilibrium melting behavior of syndiotactic polystyrene”, Polym. Commun.31, 343 (1990).
    [8] E. M. Woo, F. S. Wu, “On the multiple melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state”, Macromol. Chem. Phys. 199, 2041 (1998).
    [9] N. V. Gvozdic, D. J. Meier, “On the melting temperature of syndiotactic polystyrene”, Polym. Commun. 32, 183 (1991).
    [10] N. V. Gvozdic, D. J. Meier, “On the melting temperature of syndiotactic polystyrene: 2. Enhancement of the melting temperature of semicrystalline polymers by a novel annealing procedure”, Polym. Commun. 32, 493 (1991).
    [11] C. Wang, Y. C. Hsu, C. F. Lo, “Melting behavior and equilibrium temperature of syndiotactic polystyrene in  and  crystalline form”, Polymer 42, 8447 (2001).
    [12] C. H. Su, S. H. Chen, A. C. Su, J. C. Tsai, "Crystallization and melting of a and b phases in bulk stndiotactic polystryrene as monitored in situ via high-temperature wide-angle X-Ray diffraction", J. Polymer Research 11, 293 (2004).
    [13] C. Wang, C. C. Lin, C. P. Chu, “Crystallization and morphology features of syndiotactic polystyrene induced from glassy state”, Polymer 46, 12595 (2005).
    [14] H. D. Wu, S. C. Wu, I. D. Wu, F. C. Chang, “Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum”, Polymer 42, 4719 (2001).
    [15] B. K. Hong, W. H. Jo, S. C. Lee, J. Kim, “Correlation between melting behaviour and polymorphism of syndiotactic polystyrene and its blend with poly(2,6-dimethyl-1,4-phenylene oxide)”, Polymer 39, 1793 (1998).
    [16] T. Hashimoto, M. Itakura, and H. Hasegawa, "Late stage spinodal decomposition of a binary polymer mixture. 1. critical test of dynamic scaling on scattering function", J. Chem. Phy. 85, 6118 (1986).
    [17] T. Hashimoto, M. Itakura, and N. Shimidzu, "Late stage spinodal decomposition of a binary polymer mixture. 2. scaling analyses on qm(tau) and im(tau)", J. Chem. Phy. 85, 6773 (1986).
    [18] J.W. Cahn, “Phase separation by spinodal decomposition in isotropic systems”, J. Chem. Phy. 42, 93 (1965).
    [19] G. Matsuba, K. Kaji, K. Nishida, T. Kanaya, and M. Imai, “Conformational change and orientation fluctuations prior to the crystallization of syndiotactic polystyrene”, Macromolecules 32, 8932 (1999).
    [20] K. Kaji, K. Nishida, T. Kanaya, G. Matsuba, T. Konishi, M. Imai, “Spinodal crystallization of polymers:crystallization from the unstable melt", Adv. Polym. Sci. 191, 187 (2005).
    [21] L. D. Landau, E. M. Lifshitz, "Course of theoretical physics", Stat. Phys., 3rd ed., Pt. 1 5, (2005).
    [22] P. D. Olmsted, W. C. K. Poon, T. C. B. McLeish, N. J. Terrill, A. J. Ryan, "Spinodal assisted crystallization in polymer melts", Phys. Rev. Lett. 81, 373 (1998).
    [23] C. H. Su, U. Jeng, S. H. Chen, S. J. Lin, W. R. Wu, W.-T. Chuang, J. C. Tsai, and A. C. Su, “Nanograin evolution in cold crystallization of syndiotactic polystyrene as illustrated via in-situ small/wide-angle X-ray scattering and differential scanning calorimetry”, Macromolecules 42, 6656 (2009).
    [24] W.-T. Chuang, W. B. Su, U. Jeng, P. D. Hong, C. J. Su, C. H. Su, Y. C. Huang, K. F. Laio and A. C. Su “Formation of mesomorphic domains and subsequent structural evolution during cold crystallization of poly(trimethylene terephthalate)”, Phys. Rev. Lett.44, 1140 (2011).
    [25] C. Yan, Y. Zhang, Y. Hu, Y. Ozaki, D. Shen, Z. Gan, S. Yan, and I. Takahashi, "Melt crystallization and crystal transition of poly(butylene adipate) revealed by infrared spectroscopy", J. Phys. Chem. B 112, 3311 (2008).
    [26] R.M.K. Michael S. Sevegney, Allen R. Siedle, Pamela A. Percha,, "FTIR spectroscopic investigation of thermal effects in semi-syndiotactic polypropylene", J. Polym. Sci. B: Polym. Phys. 43, 439 (2005).
    [27] J. Xu, B. H. Guo, R. Yang, Q. Wu, G.-Q. Chen, Z.-M. Zhang, "In situ FTIR study on melting and crystallization of polyhydroxyalkanoates", Polymer 43, 6893 (2002).
    [28] R. Androsch, I. Kolesov, and H.J. Radusch, "Temperature-resolved derivative FTIR - Melting and formation of mesomorphic poly(ethylene)", J. Therm. Analy. Calor. 73, 59 (2003).
    [29] J.Y. Yu, S. Asai, and M. Sumita, "Time-resolved FTIR study of crystallization behavior of melt-crystallized poly(phenylene sulfide)", J. Macromol. Sci.:Phys. B39, 279 (2000).
    [30] A. Pintar, R. Malacea, et al., "In situ monitoring of catalytic three-phase enantioselective hydrogenation using FTIR/ATR spectroscopy", Appl. Cataly. A: General 264, 1 (2004).
    [31] X. Ding, D. Fries, and B. Jun, "A study of hydrogel thermal-dynamics using Fourier transform infrared spectrometer", Polymer 47, 4718 (2006).
    [32] T. Wu, Y. Li, Q. Wu, L. Song, G. Wu, "Thermal analysis of the melting process of poly(trimethylene terephthalate) using FTIR micro-spectroscopy", Euro. Polym. J. 41, 2216 (2005).
    [33] Y. Zhang, J. M. Zhang, Y. L. Lu, Y. X. Duan, S. Yan, and D. Shen, "Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR", Macromolecules 37, 2532 (2004).
    [34] F. Kimura, T. Kimura, A. Sugisaki, M. Komatsu, H. Sata, E. Ito, "FTIR spectroscopic study on crystallization process of poly(ethylene-2,6-naphthalate)", J. Polym. Sci. B:Polym. Phys. 35, 2741 (1997).
    [35] J. M. Zhang, Y. X. Duan, H. Sato, D. Shen, S. Yan, I. Noda, and Y. Ozaki, "Initial crystallization mechanism of isotactic polystyrene from different states", J. Phy. Chem. B 109, 5586 (2005).
    [36] E.B. Gowd, K. Tashiro, and C. Ramesh, "Structural phase transitions of syndiotactic polystyrene", Progress in Polym. Sci. 34, 280 (2009).
    [37] K. Tashiro and A. Yoshioka, "Molecular mechanism of solvent-induced crystallization of syndiotactic polystyrene glass. 2. Detection of enhanced motion of the amorphous chains in the induction period of crystallization", Macromolecules 35, 410 (2002).
    [38] S.-C. Wu and F.-C. Chang, "The crystallization characterization of bulk syndiotactic polystyrene sample: Immediate evidence from IR spectroscopy", Polymer 45, 733 (2004).
    [39] C. Wang, C.-L. Huang, Y.-C. Chen, G.-L. Hwang, S.-J. Tsai, "Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: Crystallization and morphological features", Polymer 49, 5564 (2008).
    [40] L.H. Sperling, “Physical polymer science”, Chapter IV: John Wiley & Sons, Inc. (2001)
    [41] C. Sagui, D.S. O’Gorman, and M. Grant, “Nucleation, growth and
    coarsening in phase -separating systems”, Scanning Microscopy 12, 3 (1998)
    [42] R.S. Stein and M.B. Rhodes, “Photographic light scattering by polyethylene films”, J. Appl. Phys. 31, 1873 (1960)
    [43] J. Koberstein, T. P. Russeell, R. S. Stein, “Total integrated light-scattering intensity from polymeric solids”, J. Polym. Sci., Polym. Phys. Ed. 17, 1719 (1979).
    [44] 廖巍博, "以小角度散射法決定高分子微結構", 國立成功大學化學工程研究所碩士論文 (2002)
    [45] 林昶春, "對排聚苯乙烯摻合體結晶行為之研究", 國立成功大學化學工程研究所碩士論文 (2004)
    [46] 朱嘉平, "聚苯乙烯摻合體結晶行為之研究", 國立成功大學化學工程研究所碩士論文 (2006)
    [47] 冉梅姍, "對位聚苯乙烯結晶過程微結構形態之研究", 國立成功大學化學工程研究所碩士論文 (2011)
    [48] P. Painter, M. Sobkowiak, and Y. Park, “Vibrational relaxation in atactic polystyrene: an infrared spectroscopic study”, Macromolecules 40, 1730 (2007).

    無法下載圖示 校內:2018-08-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE