研究生: |
吳維軒 Wu, Wei-Hsuan |
---|---|
論文名稱: |
琥珀酸脫氫酶乙型在肝癌細胞的表現可作為2-去氧葡萄糖化療之指標 Succinate dehydrogenase B expression in hepatocellular carcinoma: a possible indicator for chemotherapy by 2-deoxyl glucose |
指導教授: |
張文粲
Chang, Wen-Tsan |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 瓦式效應 、琥珀酸脫氫酶乙型 、糖解作用 、粒線體 、2-去氧葡萄糖 |
外文關鍵詞: | Warburg effect, SDHB, glycolysis, mitochondria, 2-deoxyl glucose |
相關次數: | 點閱:184 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1920年代,Otto Heinrich Warburg發現腫瘤細胞即使是在氧氣充足可利用的狀況之下,仍然會提高糖解作用的效率,並且產生大量的乳酸,這樣的現象被稱為”瓦氏效應”(Warburg effect)。然而Otto Heinrich Warburg認為瓦式效應的產生可能是粒腺體功能產生缺陷所造成的。琥珀酸脫氫酶乙型(SDHB)為琥珀酸脫氫酶的次單元之一,它的突變會造成副神經節瘤以及嗜鉻細胞瘤的產生。在本研究中,我嘗試利用小片段核醣核酸干擾技術抑制HeLa細胞中的琥珀酸脫氫酶乙型表現。在HeLa細胞成功建立了穩定抑制SDHB表現之細胞株後,觀察細胞之外型、細胞生長速度以及細胞爬行的速度皆與野生型之HeLa細胞株無差異。分析糖解作用與檸檬酸循環相關的蛋白質表現,發現在穩定抑制SDHB表現後,HK2之表現量有下降的現象。此外也分析了穩定抑制SDHB後,細胞內的能量代謝情形。 穩定抑制SDHB表現後造成細胞攝取葡萄糖能力上升,葡萄糖轉運體(glucose transporter 1 and 3)表現量上升,並且導致細胞內ATP含量下降,這可能代表細胞內的能量代謝偏向於糖解作用途徑。在處理不同葡萄糖濃度(0,1,4.5 mg/ml)或是在處理2-去氧葡萄糖(2-deoxyl glucose, 2-DG)的狀況之下,HeLa-shSDHB的細胞株顯示出比野生型細胞株具有更高的敏感性且細胞凋亡(apoptosis)之情形也更為明顯。另外在七株不同的肝癌細胞株(HepG2、Huh7、Hep3B、HepJ2、HepJ5、Mahlavu、SK-Hep1)當中發現,SDHB的表現量各不相同,以HepG2表現量最高,Mahlavu及SK-Hep1表現量最低。然而HepG2對於低葡萄糖濃度以及2-DG的處理狀態下,細胞生長不受影響,Mahlavu及SK-Hep1對於低葡萄糖濃度以及2-DG的處理狀態下,細胞生長則受到顯著的影響,且是偏向於細胞凋亡的途徑而死亡。本研究試圖連結肝癌細胞內生性SDHB表現量高低與細胞對於2-去氧葡萄糖的敏感性兩者之間的關聯,而目前的結果似乎顯示出SDHB的表現量與細胞對於2-去氧葡萄糖的敏感性兩者呈現反比的關係。
In the 1920s, Otto Warburg demonstrated that ascites tumor cells had high rates of glucose consumption and lactate production despite availability of sufficient oxygen to oxidize glucose completely, the phenomenon is called〝Warburg effect〞. However, Otto Warburg considered that Warburg effect may result from the dysfunction of mitochondria. Succinate dehydrogenase B (SDHB) is one of succinate dehydrogenase (SDH) subunits. Moreover, the mutation of SDHB is considered to cause paraganglioma and pheochromocytoma. In this study, I use RNAi technique to knockdown SDHB expression in HeLa cell, and I established a SDHB stable knockdown cell line successfully. After that, I analyzed glycolysis and TCA cycle-related protein expression, the hexokinase 2 (HK2) expression level is down-regulate. Interestingly, after treat with different glucose concentrations (0,1,4.5 mg/ml) or 2-deoxyglucose (2-DG) (0, 4, 10, 20mM), the SDHB deficient cell line appear to be more sensitive in low and no glucose condition or in 2-DG existence condition than wild type cell line. Furthermore, I discovered that SDHB expression level in seven different hepatoma cell lines is different in one another. SDHB expression of HepG2 is the highest, but Mahlavu and SK-Hep1 are lower than others. HepG2 is not sensitive to low glucose condition and 2-DG treatment, but Mahlavu and SK-Hep1 are sensitive to low glucose condition and 2-DG treatment. Moreover, Mahlavu and SK-Hep1 are toward to apoptosis pathway. This study try to establish the relationship between SDHB expression level and the sensitivity of cancer cells to glycolysis inhibition. So far, these data indicate that the relationship between SDHB expression level and the sensitivity of cancer cells to glycolysis inhibition maybe an inverse proportion.
Astuti, D., Latif, F., Dallol, A., Dahia, P., Douglas, F., George, E., Sköldberg, F., Husebye, E., Eng, C., and Maher, E. (2001). Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. The American Journal of Human Genetics 69, 49-54.
Bayley, J., Van Minderhout, I., Hogendoorn, P., Cornelisse, C., Van Der Wal, A., Prins, F., Teppema, L., Dahan, A., Devilee, P., and Taschner, P. (2009). Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma.
Baysal, B., Ferrell, R., Willett-Brozick, J., Lawrence, E., Myssiorek, D., Bosch, A., Mey, A., Taschner, P., Rubinstein, W., and Myers, E. (2000a). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848.
Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P.E., Rubinstein, W.S., Myers, E.N., et al. (2000b). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848-851.
Bosch, F., Ribes, J., Díaz, M., and Cléries, R. (2004a). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16.
Bosch, F., Ribes, J., Diaz, M., and Cleries, R. (2004b). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16.
Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A., and Rotig, A. (1995). Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature genetics 11, 144-149.
Bras, M., Queenan, B., and Susin, S. (2005). Programmed cell death via mitochondria: different modes of dying. Biochemistry (Moscow) 70, 231-239.
Briere, J., Favier, J., Benit, P., Ghouzzi, V., Lorenzato, A., Rabier, D., Di Renzo, M., Gimenez-Roqueplo, A., and Rustin, P. (2005). Mitochondrial succinate is instrumental for HIF1 {alpha} nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Human molecular genetics 14, 3263.
Brown, J. (1962). Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism: clinical and experimental 11, 1098.
Burnichon, N., Briere, J., Libe, R., Vescovo, L., Riviere, J., Tissier, F., Jouanno, E., Jeunemaitre, X., Benit, P., and Tzagoloff, A. (2010). SDHA is a tumor suppressor gene causing paraganglioma. Human molecular genetics.
Cecchini, G., Schroder, I., Gunsalus, R., and Maklashina, E. (2002). Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim Biophys Acta 1553, 140-157.
Chatterjee, A., Mambo, E., and Sidransky, D. (2006). Mitochondrial DNA mutations in human cancer. Oncogene 25, 4663-4674.
Chen, Z., Liu, B., Boreham, J., Wu, Y., Chen, J., and Peto, R. (2003). Smoking and liver cancer in China: case-control comparison of 36,000 liver cancer deaths vs. 17,000 cirrhosis deaths. International Journal of Cancer 107, 106-112.
DeBerardinis, R., Sayed, N., Ditsworth, D., and Thompson, C. (2008). Brick by brick: metabolism and tumor cell growth. Current opinion in genetics & development 18, 54-61.
Dekker, P., Hogendoorn, P., Kuipers-Dijkshoorn, N., Prins, F., Van Duinen, S., Taschner, P., Van der Mey, A., and Cornelisse, C. (2003). SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. The Journal of Pathology 201, 480-486.
Douwes Dekker, P.B., Hogendoorn, P.C., Kuipers-Dijkshoorn, N., Prins, F.A., van Duinen, S.G., Taschner, P.E., van der Mey, A.G., and Cornelisse, C.J. (2003). SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J Pathol 201, 480-486.
Evans, A., O'Connell, A., Pugh, J., Mason, W., Shen, F., Chen, G., Lin, W., Dia, A., M'Boup, S., and Drame, B. (1998). Geographic variation in viral load among hepatitis B carriers with differing risks of hepatocellular carcinoma. Cancer Epidemiology Biomarkers & Prevention 7, 559.
Favier, J., Briere, J., Burnichon, N., Riviere, J., Vescovo, L., Benit, P., Giscos-Douriez, I., De Reynies, A., Bertherat, J., and Badoual, C. (2009). The warburg effect is genetically determined in inherited pheochromocytomas.
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., et al. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812-3819.
Frezza, C., and Gottlieb, E. (2009). Mitochondria in cancer: not just innocent bystanders (Elsevier).
Gerald, D., Berra, E., Frapart, Y., Chan, D., Giaccia, A., Mansuy, D., Pouyssegur, J., Yaniv, M., and Mechta-Grigoriou, F. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781-794.
Gimenez-Roqueplo, A., Favier, J., Rustin, P., Rieubland, C., Kerlan, V., Plouin, P., Rotig, A., and Jeunemaitre, X. (2002). Functional consequences of a SDHB gene mutation in an apparently sporadic pheochromocytoma. Journal of Clinical Endocrinology & Metabolism 87, 4771.
Gimm, O., Armanios, M., Dziema, H., Neumann, H.P., and Eng, C. (2000). Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res 60, 6822-6825.
Gottlieb, E., and Tomlinson, I. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5, 857-866.
Henderson, A., Douglas, F., Perros, P., Morgan, C., and Maher, E. (2009). SDHB-associated renal oncocytoma suggests a broadening of the renal phenotype in hereditary paragangliomatosis. Familial cancer 8, 257-260.
Kew, M. (2002). Epidemiology of hepatocellular carcinoma. Toxicology 181, 35-38.
King, A., Selak, M., and Gottlieb, E. (2006). Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675-4682.
Kirches, E. (2009). Mitochondrial and Nuclear Genes of Mitochondrial Components in Cancer.
Kroemer, G., and Pouyssegur, J. (2008). Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482.
Liu, H., Hu, Y., Savaraj, N., Priebe, W., and Lampidis, T. (2001). Hypersensitization of Tumor Cells to Glycolytic Inhibitors. Biochemistry 40, 5542-5547.
Liu, H., Savaraj, N., Priebe, W., and Lampidis, T. (2002). Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochemical pharmacology 64, 1745-1751.
Maher, J., Krishan, A., and Lampidis, T. (2004). Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer chemotherapy and pharmacology 53, 116-122.
Maschek, G., Savaraj, N., Priebe, W., Braunschweiger, P., Hamilton, K., Tidmarsh, G., De Young, L., and Lampidis, T. (2004). 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer research 64, 31.
Maxwell, P. (2005). The HIF pathway in cancer (Elsevier).
McBride, H., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Current Biology 16, R551-R560.
Modica-Napolitano, J., Kulawiec, M., and Singh, K. (2007). Mitochondria and human cancer. Current Molecular Medicine 7, 121-131.
Muñoz-Pinedo, C., Ruiz-Ruiz, C., Ruiz de Almodóvar, C., Palacios, C., and López-Rivas, A. (2003). Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. Journal of Biological Chemistry 278, 12759.
Neumann, H., Pawlu, C., Peczkowska, M., Bausch, B., McWhinney, S., Muresan, M., Buchta, M., Franke, G., Klisch, J., and Bley, T. (2004). Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. Jama 292, 943.
Niemann, S., and Müller, U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature genetics 26, 268.
Nishikawa, M., Nishiguchi, S., Shiomi, S., Tamori, A., Koh, N., Takeda, T., Kubo, S., Hirohashi, K., Kinoshita, H., and Sato, E. (2001). Somatic mutation of mitochondrial DNA in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer research 61, 1843.
Oyedotun, K., and Lemire, B. (2004). The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase: Homology modeling, cofactor docking, and molecular dynamics simulation studies. Journal of Biological Chemistry 279, 9424.
Pasini, B., and Stratakis, C. (2009). SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma¡Vparaganglioma syndromes. Journal of internal medicine 266, 19-42.
Pedersen, P. (2007). Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers¡¦ most common phenotypes, the ¡§Warburg Effect¡¨, ie, elevated glycolysis in the presence of oxygen. Journal of bioenergetics and biomembranes 39, 211-222.
Plas, D., and Thompson, C. (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24, 7435-7442.
Pollard, P., Briere, J., Alam, N., Barwell, J., Barclay, E., Wortham, N., Hunt, T., Mitchell, M., Olpin, S., and Moat, S. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1 {alpha} in tumours which result from germline FH and SDH mutations. Human molecular genetics 14, 2231.
Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J., Markowitz, S., Trush, M., Kinzler, K., and Vogelstein, B. (1998). Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature genetics 20, 291-293.
Pouyssegur, J., Dayan, F., and Mazure, N.M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437-443.
Pradelli, L., Beneteau, M., Chauvin, C., Jacquin, M., Marchetti, S., Munoz-Pinedo, C., Auberger, P., Pende, M., and Ricci, J. (2009). Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene 29, 1641-1652.
Raha, S., and Robinson, B. (2000). Mitochondria, oxygen free radicals, disease and ageing. Trends in Biochemical Sciences 25, 502-508.
Reitzer, L., Wice, B., and Kennell, D. (1979). Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. Journal of Biological Chemistry 254, 2669.
Ricketts, C., Forman, J., Rattenberry, E., Bradshaw, N., Lalloo, F., Izatt, L., Cole, T., Armstrong, R., Kumar, V., and Morrison, P. (2010). Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Human Mutation 31, 41-51.
Robey, R., and Hay, N. (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25, 4683-4696.
Scheers, I., Bachy, V., Stephenne, X., and Sokal, E. (2005). Risk of hepatocellular carcinoma in liver mitochondrial respiratory chain disorders. The Journal of pediatrics 146, 414-417.
Selak, M., Armour, S., MacKenzie, E., Boulahbel, H., Watson, D., Mansfield, K., Pan, Y., Simon, M., Thompson, C., and Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-[alpha] prolyl hydroxylase. Cancer Cell 7, 77-85.
Semenza, G. (2000). HIF-1: mediator of physiological and pathophysiological responses to hypoxia. Journal of applied physiology 88, 1474.
Singh, D., Banerji, A., Dwarakanath, B., Tripathi, R., Gupta, J., Mathew, T., Ravindranath, T., and Jain, V. (2005). Optimizing cancer radiotherapy with 2-deoxy-D-glucose. Strahlentherapie und Onkologie 181, 507-514.
Swietach, P., Vaughan-Jones, R.D., and Harris, A.L. (2007). Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26, 299-310.
Tennant, D., Duran, R., Boulahbel, H., and Gottlieb, E. (2009). Metabolic transformation in cancer. Carcinogenesis 30, 1269.
Timmers, H., Kozupa, A., Chen, C., Carrasquillo, J., Ling, A., Eisenhofer, G., Adams, K., Solis, D., Lenders, J., and Pacak, K. (2007). Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. Journal of Clinical Oncology 25, 2262.
Update, A. (2001). Oral Contraceptives and Cancer. Drug Safety 24, 741-754.
Vander Heiden, M., Cantley, L., and Thompson, C. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science Signaling 324, 1029.
Wang, L., You, S., Lu, S., Ho, H., Wu, M., Sun, C., Yang, H., and Chen, C. (2003). Risk of hepatocellular carcinoma and habits of alcohol drinking, betel quid chewing and cigarette smoking: a cohort of 2416 HBsAg-seropositive and 9421 HBsAg-seronegative male residents in Taiwan. Cancer Causes and Control 14, 241-250.
Weindruch, R., Keenan, K., Carney, J., Fernandes, G., Feuers, R., Floyd, R., Halter, J., Ramsey, J., Richardson, A., and Roth, G. (2001). Caloric restriction mimetics. The Journals of Gerontology: Series A 56, 20.
Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., Byrne, B., Cecchini, G., and Iwata, S. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700.
Yin, P., Lee, H., Chau, G., Wu, Y., Li, S., Lui, W., Wei, Y., Liu, T., and Chi, C. (2004). Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. British journal of cancer 90, 2390-2396.
Zhu, H., and Bunn, H. (1999). Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respiration physiology 115, 239-247.
Zu, X., and Guppy, M. (2004). Cancer metabolism: facts, fantasy, and fiction. Biochemical and biophysical research communications 313, 459-465.