簡易檢索 / 詳目顯示

研究生: 曾重賓
Tseng, Chung-Bin
論文名稱: 氧電漿輔助奈米球微影術之研究與應用
Development of Plasma-Assisted Nanosphere Lithography and its Application
指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 100
中文關鍵詞: 奈米球微影術
外文關鍵詞: Nanosphere Lithography
相關次數: 點閱:54下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文發展出多種奈米製造技術,成功製造出不同形狀的奈米結構,經過掃描式電子顯微鏡的觀察,目前最大有序面積皆可達3 mm x 3 mm以上。
    第一種技術為奈米球微影術製成金屬奈米三角形粒子陣列,本論文分別研究不同金屬奈米三角形粒子的侷部表面電漿子共振效應,發現這些金屬奈米三角形粒子的表面電漿子最大共振波長會隨著三角形邊長增加或是所在基板折射率的增加而有紅位移的現象。
    第二種技術為電漿輔助式奈米球微影術,其能夠製造不同邊長大小的金屬奈米三角形粒子,利用氧電漿蝕刻使三角形粒子邊長增加時,其表面電漿子的最大共振波長仍會有紅位移的現象發生。同時,氧電漿蝕刻製程能使三角形粒子尖端的距離縮短,目前預估能做出最小的尖端距離為40奈米。當三角形對尖端距離小於100奈米時,在奈米光電領域可視為一種蝴蝶式奈米天線結構,且隨著尖端距離的縮短,表面電漿子的最大共振波長會有紅位移的現象。此外,預加熱過的奈米球經過電漿蝕刻後彼此會連結在一起,預加熱奈米球的技術比起一般未加熱技術可以使蝴蝶式奈米天線結構的三角形對尖端有一極小的分離且具一致性。
    第三種技術為奈米球體聚焦微影術製成圓形奈米圓盤陣列。若使用直徑1微米的奈米球為聚焦光罩,可控制圓盤的直徑從800奈米到960奈米。直徑500奈米的奈米球同樣能做為聚焦光罩製做奈米圓盤陣列。我們使用奈米球體聚焦微影術製做金屬-絕緣體-金屬的奈米圓盤陣列並研究其表面電漿子行為,經由穿透率光譜發現金屬-絕緣體-金屬的奈米圓盤會比只有單層金屬的奈米圓盤多出一個侷部表面電漿子共振模態。
    本論文成功發展奈米球微影術、電漿輔助式奈米球微影術、預加熱奈米球之電漿輔助式奈米球微影術及奈米球體聚焦微影術的奈米製造技術。目前均能以低成本的方式製做出大面積且有序排列的奈米粒子陣列,這些奈米製造技術將能有效地應用在奈米光電領域上且得到令人興奮的結果。

    In this dissertation, various nanofabrication techniques using nanometer-sized colloids are developed and different types of nanoparticle arrays are successfully fabricated. Large areas (~ 3 mm x 3 mm) of ordered periodic arrays are obtained by all methods investigated.
    First, metal nanoparticles arrays were fabricated using conventional Nanosphere Lithography (NSL). Localized surface plasmon resonances (LSPR) of these nanoparticles made from different metal were investigated. LSPR experiences red-shift as the physical sizes increase or higher-refractive-index substrate was used.
    Second, NSL combining with oxygen plasma treatments was demonstrated to be able to fabricate metallic nanotriangles with different side length. LSPR also red shifts as the size of the nanotriangles increases due to oxygen plasma etching. Oxygen plasma etching also reduced the gap distance between nanotriangles. The smallest gap distance fabricated was estimated to be 40 nm. Nanotriangles pairs with sub-100nm gap are referred as bowtie nanoantennas that are of great importance in Nanophotonics. LSPR of the nanoantenna was observed to red-shifted as the gap distance decreased. In addition, preheated nanosphere solution was used along with the plasma-treated NSL. This method can fabricate bowtie nanoantenna with very narrow and uniform gap separation that regular plasma-treated NSL can not obtain.
    Third, two-dimensional circular nanodisk arrays were also fabricated by using Nanospherical Lens Lithography (NLL). Nanodisks with diameters between 800 to 960 nm were fabricated using 1 μm polystyrene nanospheres as the lithographic mask. 500 nm polystyrene nanospheres were also demonstrated to obtain similar results. Plasmonic properties of Metal-Insulator-Metal nanodisks using NLL were investigated. LSPR mode splitting was observed in the transmission spectra for nanodisk arrays with different disk diameters.
    In conclusion, nanofabrication techniques using Nanosphere Lithography, Plasma-treated NSL, Plasma-treated NSL using pre-heated nanospheres, and Nanospherical Lens Lithography were developed in this research. Each of the techniques can fabricated large-area ordered nanoparticles arrays with low fabrication cost. The future applications for these fabricated arrays can contribute greatly in Nanophotonics and offer exciting experimental results.

    中文摘要Ⅰ 英文摘要Ⅲ 致謝Ⅴ 目錄Ⅵ 表目錄Ⅸ 圖目錄Ⅸ 第一章 簡介1 1-1研究動機1 1-2奈米光電2 1-2.1奈米分析2 1-2.2奈米製造3 1-3奈米球微影技術4 1-3.1奈米球自組排列機制4 1-3.2奈米球排列方法5 1-3.3奈米球微影術6 1-3.4加熱與電漿蝕刻輔助NSL 8 1-3.5奈米圖形應用10 1-4光子晶體12 1-5電漿子光學14 1-5.1表面電漿子基本原理16 1-5.2侷部表面電漿共振21 1-5.3蝴蝶結式奈米天線24 第二章 實驗儀器及實驗流程27 2-1奈米球溶液27 2-2自組裝儀器架設28 2-3製程儀器30 2-3.1光罩對準儀30 2-3.2PVD真空熱蒸鍍機30 2-3.3電漿蝕刻系統30 2-4量測儀器32 2-4.1掃描式電子顯微鏡32 2-4.2原子力顯微鏡32 2-4.3紫外線/可見光分光譜儀33 2.5奈米球模板製備34 2.5-1基板潔淨34 2.5-2奈米球溶液配置34 2.5-3奈米球體排列35 2-6奈米結構製程步驟36 2-6.1奈米三角金屬陣列製程36 2-6.2奈米二維光子晶體陣列製程37 2-6.3光子晶體發光二極體製程39 2-6.4蝴蝶結式奈米天線製程40 2-6.5奈米洞及圓盤陣列製程41 第三章 奈米粒子的電漿子性質43 3-1材料的選擇43 3-2金屬三角形之表面電漿子行為研究44 3-2.1表面電漿子之尺寸大小研究45 3-2.2表面電漿子之基板效應研究47 3-2.3表面電漿子之形狀效應研究48 3-3銦奈米粒子之表面電漿子行為研究50 3-3.1粒徑分析51 3-3.2銦顆粒的電漿子性質52 3-3.3結論55 第四章 電漿輔式奈米球微影術56 4-1 二維光子晶體陣列56 4-1.1奈米球的微縮化56 4-1.2金屬奈米網結構之研究63 4-2蝴蝶結式金屬奈米天線之研究68 4-2.1預加熱奈米球模板68 4-2.2金屬奈米天線之電漿子性質71 4-3結論77 第五章 奈米球體聚焦微影術78 5-1 二維奈米洞陣列之研究78 5-1.1奈米球在光阻上的排列78 5-1.2黃光微影參數對洞直徑的影響79 5-1.3電漿輔助奈米球體聚焦微影術80 5-2 金屬奈米圓盤陣列之研究84 5-2.1金屬圓盤尺寸之研究84 5-2.2金屬圓盤形體之研究86 5-3金屬-絕緣體-金屬(MIM)結構之奈米圓盤研究87 5-3.1銀-二氧化矽-銀圓盤製備87 5-3.2 MIM奈米圓盤電漿子性質之研究88 5-4結論91 第六章 結論及未來展望92 6-1結論92 6-2未來展望94 參考文獻96

    [1] D.A.Carder, A.Markwitz, H.Baumann, J.Kennedy,“Self-assembled germanium nanostructures formed using electron-beam annealing, ”Current Applied Physics 3-4, 276-279 (2008)
    [2] C.A.Volkert , A.M. Minor, Guest Editors,“Focused Ion Beam Microscopy and Micromachining,”MRSBulletin 32 (2007)
    [3] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H.Yoshimura and K. Nagayama,“Mechanism of formation of two-dimensional crystals from latex particles on substrates,”Langmuir 8, 3183-3190 (1992)
    [4] Anjeanette D. Ormonde, Erin C. M. Hicks, Jimmy Castillo, and Richard P. Van Duyne,“Nanosphere Lithography, Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy,”Langmuir 16, 6927-6931 (2004)
    [5] Amanda J. Haes, Christy L.Haynes, Adam D.McFarland, George C. Schatz, Richard P.Van Duyne, and Shengli Zou,“Plasmonic Materials
    for Surface-Enhanced Sensing and Spectroscopy,”MRSBulletin 30 (2005)
    [6] Adam Kosiorek, Witold Kandulski, Hanna Glaczynska, and Michael Giersig. “Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks,”small 4, 439-444 (2005)
    [7]Chunxiao Cong, William Chandra Junus , Zexiang Shen , Ting Yu,“New Colloidal Lithographic Nanopatterns Fabricated by Combining Pre-Heating and Reactive Ion Etching,”Nanoscale Res Lett 4, 1324–1328 (2009)
    [8]Dae-Geun Choi, Hyung Kyun Yu, Se Gyu Jang, and Seung-Man Yang,“Colloidal Lithographic Nanopatterning via Reactive Ion Etching,”J. Am. Chem. Soc. 22, 7019-7025 (2004)
    [9] R. Fenollosa and F. Meseguer,“Non-Close-Packed Artificial Opals,” Adv. Mater. 15 (2003)
    [10] K.Busch , S.John , Phys.Rev. 58, 3896 (1998)
    [11] E.Yablonovutch , Nature (1999)
    [12] Christy L. Haynes and Richard P. Van Duyne, “Dichroic Optical Properties of Extended Nanostructures Fabricated Using Angle-Resolved Nanosphere Lithography,”Nano Lett. 7, 939-943 (2005)
    [13] Xiaoyu Zhang, Erin M. Hicks, Jing Zhao, George C. Schatz, and Richard P. Van Duyne,“ Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography,”Nano Lett. 7, 1503-1507 (2005)
    [14] Amanda J. Haes A Richard P. Van Duyne,“A unified view of propagating and localized surface plasmon resonance biosensors,”Anal Bioanal Chem. 379, 920-930(2004)
    [15] Chien Fat Chau and Tracy Melvin,“The fabrication of macroporous polysilicon by nanosphere lithography,”J. Micromech. Microeng. 18, 064012 (2008)
    [16] K. Piglmayer, R. Denk, and D. Bauerle,“Laser-induced surface patterning by means of microspheres,”Appl. Phys.Lett. 80, 4693 (2002)
    [17] Eli Yablonovitch,“Inhibited Spontaneous Emission in Solid-State Physics and Electronics,”Phys. Rev. Lett. 58, 2059–2062 (1987)
    [18] Sajeev John,“Strong localization of photons in certain disordered dielectric superlattices,”Phys. Rev. Lett. 58, 2486–2489 (1987)
    [19] E. Yablonovitch and T. J. Gmitter,“Photonic band structure: The face-centered-cubic case,”Phys. Rev. Lett. 63, 1950–1953 (1989)
    [20] E. Yablonovitch and T. J. Gmitter,“Photonic band structure: The face-centered-cubic case employing nonspherical atoms,”Phys. Rev. Lett. 67, 2295–2298 (1991)
    [21]John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn & Robert D. Meade,“Photonic Crystals: Molding the Flow of,”Princeton University Press, Princeton (1995)
    [22]欒丕綱,陳啟昌,“光子晶體---從蝴蝶翅膀到奈米光子學”五南圖書出版社
    [23] G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig,“Optucak Transmissinon through Hexagonal Arrays of Subwavelength Holes in Thin Metal Films,”Nano Lett. 7, 2926-2930 (2007)
    [24]邱國斌,蔡定平,“金屬表面電漿簡介,” 物理雙月刊28, 2 (2006)
    [25] N. W. Ashcroft, and N. D. Mermin,“Solid State Physics,”(Harcount)
    [26]吳民耀,劉威志, “表面電漿子理論與模擬,” 物理雙月刊28,2 (2006)
    [27] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz,“Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, J. Chem. Phys. 116, 6755(2002)
    [28] A.A. Lazarides, K. Lance Kelly, T.R. Jensen, G.C. Schatz,“Optical properties of metal nanoparticles and nanoparticle aggregates important in biosensors”, Journal of Molecular Structure (Theochem) 529,59–63 (2000)
    [29] Michelle Duval Malinsky, K. Lance Kelly, George C. Schatz, and Richard P. Van Duyne,“Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles”, J. Phys. Chem. B 105, 2343-2350 (2001)
    [30] Anika Kinkhabwala1, Zongfu Yu, Shanhui Fan, Yuri Avlasevich, Klaus Mullen and W. E. Moerner,“Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna”,Nature Photonics 3 (2009)
    [31] Arvind Sundaramurthy, P. James Schuck, Nicholas R. Conley, David P. Fromm, Gordon S. Kino, W. E. Moerner,“Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas,”Nano Lett. 6, 355-360 (2006)
    [32] Kosei Ueno, Saulius Juodkazis, Toshiyuki Shibuya,Yukie Yokota, Vygantas Mizeikis, Keiji Sasaki, and Hiroaki Misawa, “Nanoparticle Plasmon-Assisted Two-Photon Polymerization Induced by Incoherent Excitation Source,” J. AM. CHEM. SOC. 130, 6938-6939 (2008)
    [33] David P. Fromm, Arvind Sundaramurthy, P. James Schuck, Gordon Kino, W. E. Moerner,“Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,”Nano Lett. 4, 957-961 (2004)
    [34] George C. Schartz, Richard P. Van Duyne,“Localized Surface Plasmon Resonace Spectroscopy of Triangular Aluminum Nanoparticles,”J. Phys. Chem. C 112, 13958-13963 (2008)
    [35] J. Boneberg, George C. Schartz,“Optical near-fields of triangular nanostructures,”Appl. Phys. A 89, 299-303 (2007)

    下載圖示 校內:2013-07-22公開
    校外:2013-07-22公開
    QR CODE