| 研究生: |
吳俊賢 Wu, Chun-Hsien |
|---|---|
| 論文名稱: |
利用交流電滲透驅動流體與微粒子 Pumping Liquids and Particles Using AC Electroosmosis |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 交流電滲 、偏壓極化交流電滲 |
| 外文關鍵詞: | AC Electroosmosis(ACEO), Biased Polarization AC Electroosmosis(B-P ACEO) |
| 相關次數: | 點閱:79 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來交流電滲(ACEO)被廣泛使用在微流體的傳輸、混合或微粒子收集上。交流電滲幫浦為在一非對稱指叉型電極上施予交流電訊號,藉由非對稱幾何形狀之電極產生非對稱渦漩,進而造成推動流體的效果。偏壓極化交流電滲(B-P ACEO)為在一對稱式指叉型電極上施予交流電訊號並疊加直流偏壓,藉由非對稱式極化流體產生推動流體的效果。本研究經由實驗結果顯示,偏壓極化交流電滲比交流電滲更能有效推動流體。因此本研究設計對稱式電極與非對稱式電極,探討幾何差異對偏壓極化交流電滲之影響,定義微粒子流經電極表面之速度為表面流速(Vs),並探討相同電壓、溶液導電度為0.00024S/m之下,頻率對偏壓極化交流電滲之表面流速(Vs)的影響,實驗結果顯示偏壓極化交流電滲與交流電滲皆有一最佳頻率;而在相同電壓下,偏壓極化交流電滲以非對稱式電極Type II有最大之表面流速(Vs)。
Recently AC Electroosmosis (ACEO) has been applied for fluid transport, mixing and micro/nano particles concentrating. ACEO pumping effects happen when ac signals are applied to arrays of asymmetric interdigitated microelectrodes. Net fluid flow is induced by asymmetric fluid vortices which are caused by asymmetric electrode geometries. Biased Polarization AC Electroosmosis (B-P ACEO) is another type of ACEO. Instead of ac sinusoidal signal, dc-biased ac signals are used in B-P ACEO. Based on the electrodes with positive or negative biasd ac signals, Faradic charge and capacitive charging mechanisms occurs. Net fluid flow is formed by different biased polarizations. This thesis reports that pumping effect by B-P ACEO is more efficient than conventional ACEO with the same electrode geometry. This thesis also studies the difference between symmetric electrode and asymmetric electrode of B-P ACEO by difining surface velocity (Vs) which is particle’s velocity along the surface of electrodes. The dependence of surface velocity (Vs) and frequency is descried for the same signal and fluid with conductivity at 0.00024 S/m. Experiments present that there are characteristic frequency on both B-P ACEO and ACEO. Finally, this paper presents that asymmetric electrode Type II of B-P ACEO has the highest surface velocity (Vs) for all driven signals.
[1] Feyman, There is plenty of room at the bottom, http://www.zyvex.com/ nanotech/feynman.html, 1959
[2] A. Manz, N. Graber and H. M. Winder, Miniaturized total chemical analysis system a novel concept for chemical sensing , Sensors and Actuators, B, 244–248, 1990
[3] H. A. Pohl, The motion and precipition of suspensoids in divergent electric fields, J. Appl. Phys., Vol. 22, 869–871, 1951
[4] A. Ramos, H. Morgan, N. G. Green and A. Castellanos, AC Electrokinetics : A review of forces in microelectrode structure, J. Phys. D: Appl. Phys., 31, 2338-2353, 1998
[5] N. G. Green and H. Morgan, Dielectrophoretic separation of nano-particles, J. Phys. D: Appl. Phys., 30, L41-L84,1997
[6] S. Huang, S. Wang, H. S. Khoo and F. Tseng, AC electroosmotic generated in-plane microvortices for stationary or continuous fluid mixing, Sensors and Actuators B, 125, 326-336, 2007
[7] P. K. Wong, C. Y. Chen, T. H. Wang and C. M. Ho, Electrokinetic bioprocessor for concentrating cells and molecules, Anal. Chem., 76, 6908-6914, 2004
[8] A. Ramos, H. Morgan, N. G. Green and A. Castellanos, AC Electric-Field-Induced fluid flow in microelectrodes, J Colloid Interface Sci., 217, 420, 1999
[9] A. Ajdari, Pumping liquids using asymmetric electrode arrays, Phys. Rev. E, 61, R45, 2000
[10] N. G. Green, A. Ramos,.A. González, H. Morgan and A. Castellans, Fluid flow induced by nonuniform ac electrolytes on microelectrodes. I. Experimental measurements, Phys. Rev. E, 61, 4,4011, 2000
[11] N. G. Green, A. Ramos,.A. González, H. Morgan and A. Castellans, Fluid flow induced by nonuniform ac electrolytes on microelectrodes. II. A linear double-layer analysis, Phys. Rev. E, 61, 4,4019, 2000
[12] A. B. Brown, C. G. Smith and A. R. Rennie, Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes, Phys. Rev. E, 63, 016305,2000
[13] N. G. Green, A. Ramos, A. González, H. Morgan and A. Castellans, Fluid flow induced by nonuniform ac electrolytes on microelectrodes. III. Observation of streamlines and numerical simulatio, Phys. Rev. E, 66, 026305, 2002
[14] A. Ramos, A. González, A. Castellans, N. G. Green and H. Morgan, Pumping liquids with ac voltages applied to asymmetric pairs of microelectrodes, Phys. Rev. E, 67,056302, 2003
[15] D. Lastochkin, R. Zhou, P. Wang, Y. Ben and H. C. Chang, Electrokinetic micropump and micromixer design based on ac faradic polarization, J. Appl. Phy., 96, 3, 2004
[16] V. Studer, A. Pépin, Y. Chen and A. Ajari, An integrated AC electrokinetic pump im a microfluidic loop for fast and tunable control, Analyst, 129, 944-949, 2004
[17] J. Wu, y. Ben, D. Battigelli and H. C. Chang,Long-Range AC Electroosmotic trapping and detection of bioparticles,Ind. Eng. Chem. Res., 44, 2815-2822, 2005
[18] J. Wu, Biased AC Electro-osmosis for on-chip bioparticle processing, IEEE TRANSACTIONS ON NANOTECHNOLOGY, 5, 2, 2006
[19] M. Z. Bazant and Y. Ben, Theoretical prediction of fast 3D AC electro-osmotic pumps, Lab Chip, 6, 1455-1461, 2006
[20] J. P. Urbanski, T. Thorsen, J. A. Levitan and M. Z. Bazant, Fast ac electro-osmotic micropumps with nonplanar electrodes, APPLIED PHYSICS LETTERS, 89 143508, 2006
[21] P. Tathiresddy, Y. H. Choi and M. Skliar, Particle AC electrokinetics in planar interdigitated microelectrode geometry, Journal of Electrostatics, 66, 609-619, 2008
[22] J. Wu, AC electro-osmotic micropump by asymmetric electrode polarization, Journal of Applied Physics, 103, 024907, 2008
[23] S. Huang, S. Wang, H. J. Hsueh and K. Y. Hung, Configurable AC electroosmotic generated in-plane microvortices and pumping flow in microchannels, Microfluidics and Nanofluidics, 8, 187-195, 2010
[24] M. Lian, J. Wu, Ultrafast micropumping by biased alternating current electrokinetics, APPLED PHYSICS LETTERS, 94, 064101, 2009
[25] W. Y. Ng, S. Goh, Y. C. Lam, C. Yang and I. Rodríguze, DC-biased AC-electroosmotic and AC electrothermal flow mixing in microchannels, Lab Chip, 9, 802-809, 2009
[26] J. Oh, R. Hart, J. Capurro and H. Noh, Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel, Lab Chip, 9, 62-78, 2009
[27] M. Z. Bazant and T. M. Squires, Induced-charge electrokinetic phenomena, Current Opinion in Colloid & Interface Science, 15, 203-213, 2010
[28] W. Hilber, B. Weiss, M. Mikolasek, R. Holly, K. Hingerl abd B. Jakoby, Particle manipulation using 3D ac electro-osmotic micropumps, J. Micromech. Microeng. , 18, 064016,2008
[29] E. Du and S. Manoochehri, Electrohydrodynamic-mediated dielectrophoretic separation and transport based on asymmetric electrode pair, Electrophoresis, 29, 5017-5025, 2008
[30] 翁志遠, 介電泳場流分離法之數值模擬與實驗研究, 碩士論文, 國立成功大學, 2007
[31] NANOTM SU-8 Negative Tone Photoresist Formulations 50-100, MICRO CHEM
[32] S. Elder, W. Gathright, B. Levy, W. Tu, AC electrokinetics and nanotechnology
[33] Ben, Y., Nonlinear electrokinetic phenomena in microfluidic devices, Ph.D. Dissertation, university of Nitre Dame, 2004
[34] M. Přibyl, D. Šnita and M. Marek, Multiphysical modeling of DC and AC Electroosmosis in micro- and nanosystems
[35] W. Y. Ng, Y. C. Lam and I. Rodríguez, Experimental verification of Faradaic charging in ac electrokinetics, BIOMICROFLUIDICS, 3, 2022405, 2009
[36] H. Morgan and N. G. Green, AC Electrokinetics:colloids and nanoparticles, RESEARCH STUDIES PRESS LTD., 2003