| 研究生: |
張哲儒 Chang, Che-Ju |
|---|---|
| 論文名稱: |
利用聲學元素模擬部分沉浸之圓柱結構的振動響應 Using Acoustic Elements to Simulate the Vibration Response of a Submerged Cylindrical Structure |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 流固耦合 、複數自然振動頻率 、共振頻率 、有限元素法 、聲學阻抗 |
| 外文關鍵詞: | Fluid-Structure Coupling, Complex Natural Frequency, Resonant Frequency, Finite Element Method, Acoustic Impedance |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
懸臂梁的振動特性與其所沉浸的流體性質有極大的關係,本文以二維流場解析結果得知流體與懸臂梁沉浸部分之交互作用,建立完全或部分沉浸下懸臂梁受外力激發的位移響應分析,並將流體性質、結構尺度、沉水率對共振頻率的影響以折減曲線表示。同時可以利用此折減曲線與懸臂梁位移響應來反推沉浸流體的黏滯係數。在有限元素模擬的數值分析中,採用兩種技巧,分別為附加質量與聲學阻抗法,取代直接使用流體元素將流-固交互作用加入,以節省計算成本。特別是聲學阻抗法能且使用於三維結構上。對於模擬完全或部分沉浸的複雜結構物之位移響應較為容易。
The vibration characteristic of a cantilever beam strongly depends on the properties of the fluid in which the beam is immersed. By the analytical results of two-dimensional flow analysis, we could clarify the interaction between fluids and the submerged cantilever beam. In this thesis, we established the method to analyze the displacement response of a fully or partially submerged cantilever beam due to an external excitation force. The influence of fluid properties, structure dimensions, and submerged percentage on the resonant frequency are shown on the reduction curves. These reduction curves can also be used to back-calculate the dynamics viscosity of an immersing fluid from the vibration response of a cantilever beam.
In our numerical analysis of finite element simulations, we applied two techniques, which are Added Mass and Acoustic Impedance, to add the fluid-structure interaction instead of using fluid elements directly for saving computational cost. Particularly, Acoustic Impedance method is applicable to three-dimensional structures. It is easier for simulating the displacement response of a fully or partially submerged complex structure.
[1] T.-C. Kao, Particle Size Analysis of Nanofluids via Liquid Pendulum Type Viscoelastic Spectroscopy, Master Thesis, National Cheng Kung University, 2018
[2] Y. A. Cenge and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications, McGraw-Hill, 2018
[3] G. G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, Part II, 9, 8-106, 1850
[4] L. Rosenhead, Laminar Boundary Layers, Oxford University Press, 1963
[5] J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscpope, Journal of Applied Physics, 1998
[6] F. Fahy and P. Gardonio, Sound and Structural Vibration, Academic Press, 2007
[7] B.-S. Chen, Analysis on three-dimensional vibration and structure-borne sound of steel box beams, Master Thesis, National Cheng Kung University, 2018
[8] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, I. Dufour and B.Jakoby, Reduced order models for resonant viscosity and mass density sensors, Sensors and Actuators A:Physical, Elsevier, 2014
[9] C.W. Hsu, Theoretical analysis of pendulum-type viscoelastic spectroscopy for liquid, Master Thesis, National Cheng Kung University, 2015
[10] F. Fahy, Foundations of Engineering Acoustics, Academic Press, 2003
[11] 朱哲民、杜功煥和龔秀芬,聲學基礎,南京大學出版社,1981
[12] M. P. Norton and D. G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, Cambridge University Press, 2003
[13] C.-A. Hu, C.-J. Wu, T.-J. Yang and S.-L. Yang, Analysis of optical properties in cylindrical dielectric photonic crystal, Optics Communications 291, 424-434, 2013
[14] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, 1999
[15] A. K. Chopra, Dynamics of Structures : Theory and Applications to Earthquake Engineering, Pearson, 2014
[16] K. L. Richards, Design Engineer's Sourcebook , CRC Press, 2016
[17] S.-F. Chen, R.-C. Chan, S.M. Read and L.A. Bromley, Viscosity of sea water solutions, Desalination Volume 13, 1973