簡易檢索 / 詳目顯示

研究生: 張哲儒
Chang, Che-Ju
論文名稱: 利用聲學元素模擬部分沉浸之圓柱結構的振動響應
Using Acoustic Elements to Simulate the Vibration Response of a Submerged Cylindrical Structure
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 63
中文關鍵詞: 流固耦合複數自然振動頻率共振頻率有限元素法聲學阻抗
外文關鍵詞: Fluid-Structure Coupling, Complex Natural Frequency, Resonant Frequency, Finite Element Method, Acoustic Impedance
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 懸臂梁的振動特性與其所沉浸的流體性質有極大的關係,本文以二維流場解析結果得知流體與懸臂梁沉浸部分之交互作用,建立完全或部分沉浸下懸臂梁受外力激發的位移響應分析,並將流體性質、結構尺度、沉水率對共振頻率的影響以折減曲線表示。同時可以利用此折減曲線與懸臂梁位移響應來反推沉浸流體的黏滯係數。在有限元素模擬的數值分析中,採用兩種技巧,分別為附加質量與聲學阻抗法,取代直接使用流體元素將流-固交互作用加入,以節省計算成本。特別是聲學阻抗法能且使用於三維結構上。對於模擬完全或部分沉浸的複雜結構物之位移響應較為容易。

    The vibration characteristic of a cantilever beam strongly depends on the properties of the fluid in which the beam is immersed. By the analytical results of two-dimensional flow analysis, we could clarify the interaction between fluids and the submerged cantilever beam. In this thesis, we established the method to analyze the displacement response of a fully or partially submerged cantilever beam due to an external excitation force. The influence of fluid properties, structure dimensions, and submerged percentage on the resonant frequency are shown on the reduction curves. These reduction curves can also be used to back-calculate the dynamics viscosity of an immersing fluid from the vibration response of a cantilever beam.
    In our numerical analysis of finite element simulations, we applied two techniques, which are Added Mass and Acoustic Impedance, to add the fluid-structure interaction instead of using fluid elements directly for saving computational cost. Particularly, Acoustic Impedance method is applicable to three-dimensional structures. It is easier for simulating the displacement response of a fully or partially submerged complex structure.

    摘要 I ABSTRACT II 誌謝 VIII 目錄 IX 圖目錄 XI 表目錄 XII 符號表 XIII 下標 XIII 符號 XIII 第一章 緒論 1 1.1研究動機與目的 1 1.2本文架構與內容 3 第二章 文獻回顧 4 第三章 相關理論 6 3.1一維懸臂梁自然振動頻率與模態分析 6 3.2自然振動模態正交性 7 3.3懸臂梁自由端受周期性點載重之動態分析 8 3.4圓柱於二維流體中週期振動之受力分析 9 3.5 聲學波動方程式簡介 17 第四章 流體性質對於懸臂梁振動之影響 22 4.1完全沉浸於無黏滯性流體中懸臂梁之自然振動頻率分析 22 4.2完全沉浸於無黏滯性流體中懸臂梁之外力頻率響應分析 23 4.3完全沉浸於黏滯性流體中懸臂梁之自然振動頻率分析 24 4.4完全沉浸於黏滯性流體中懸臂梁之外力共振頻率分析 24 4.5部分沉浸於黏滯性流體中懸臂梁之自然振動頻率分析 26 4.6部分沉浸於黏滯性流體中懸臂梁之外力共振頻率分析 27 4.7部分沉浸於黏滯性流體之懸臂梁受週期載重之位移解析 28 第五章 數值模擬與案例討論 31 5.1流體黏滯性對共振頻率之影響 31 5.2部分沉浸對共振頻率之影響 32 5.3案例討論 33 5.3.1利用正規化曲線預測流體效應造成之共振頻率變化 33 5.3.2利用正規化曲線預測未知流體之黏滯係數 34 5.3.3沉水率對離岸風機之共振頻率影響 35 5.3.4利用正規化曲線修正結構物尺度縮放之影響 35 5.4數值模擬方法 36 5.4.5附加質量(Added Mass)法 37 5.4.6聲學阻抗法 37 5.5模擬結果 39 5.5.1完全沉浸之圓形斷面懸臂梁 39 5.5.2完全沉浸之空心圓管懸臂梁 40 5.5.3部分沉浸之圓形斷面懸臂梁 40 第六章 結論 53 附錄 55 A.部分沉浸於黏滯性流體中懸臂梁之自然振動頻率分析 55 B.部分沉浸於黏滯性流體之懸臂梁受周期點載重之動態分析 57 C.二維聲學柱面波之傳播分析 59 參考文獻 62

    [1] T.-C. Kao, Particle Size Analysis of Nanofluids via Liquid Pendulum Type Viscoelastic Spectroscopy, Master Thesis, National Cheng Kung University, 2018
    [2] Y. A. Cenge and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications, McGraw-Hill, 2018
    [3] G. G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, Part II, 9, 8-106, 1850
    [4] L. Rosenhead, Laminar Boundary Layers, Oxford University Press, 1963
    [5] J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscpope, Journal of Applied Physics, 1998
    [6] F. Fahy and P. Gardonio, Sound and Structural Vibration, Academic Press, 2007
    [7] B.-S. Chen, Analysis on three-dimensional vibration and structure-borne sound of steel box beams, Master Thesis, National Cheng Kung University, 2018
    [8] M. Heinisch, T. Voglhuber-Brunnmaier, E. K. Reichel, I. Dufour and B.Jakoby, Reduced order models for resonant viscosity and mass density sensors, Sensors and Actuators A:Physical, Elsevier, 2014
    [9] C.W. Hsu, Theoretical analysis of pendulum-type viscoelastic spectroscopy for liquid, Master Thesis, National Cheng Kung University, 2015
    [10] F. Fahy, Foundations of Engineering Acoustics, Academic Press, 2003
    [11] 朱哲民、杜功煥和龔秀芬,聲學基礎,南京大學出版社,1981
    [12] M. P. Norton and D. G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers, Cambridge University Press, 2003
    [13] C.-A. Hu, C.-J. Wu, T.-J. Yang and S.-L. Yang, Analysis of optical properties in cylindrical dielectric photonic crystal, Optics Communications 291, 424-434, 2013
    [14] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, 1999
    [15] A. K. Chopra, Dynamics of Structures : Theory and Applications to Earthquake Engineering, Pearson, 2014
    [16] K. L. Richards, Design Engineer's Sourcebook , CRC Press, 2016
    [17] S.-F. Chen, R.-C. Chan, S.M. Read and L.A. Bromley, Viscosity of sea water solutions, Desalination Volume 13, 1973

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE