簡易檢索 / 詳目顯示

研究生: 江玔諺
Jiang, Chuan-Yen
論文名稱: 利用理性蛋白質工程改善偽單孢菌酯水解酵素對其受質3-溴異丁酸甲酯之鏡像選擇性
Improved enantioselectivity of Pseudomonas putida IFO12996 esterase towards methyl 3-bromo-2-methylpropionate by rational protein engineering
指導教授: 蕭世裕
Shaw, Shi-Yu
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 對掌性子理性蛋白質工程分子對接鏡像選擇性
外文關鍵詞: Chiral synthon, Rational protein engineering, Molecular docking, Enantioselectivity
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3-溴異丁酸甲酯(methyl 3-bromo-2-methylpropionate, MBMP) 為製備抗高血壓藥物-Captopril、反轉錄病毒蛋白酶抑制劑、環氧合酶抑制劑、非天然胺基酸以及生物鹼的多重對掌性子,在製藥工業上扮演重要的角色。然而,酯水解酵素對MBMP 的鏡像選擇性差導致無法得到高光學純度之單一鏡像異構物是目前最大的瓶頸。
    本研究建立在理性蛋白質工程的基礎上,藉由分子對接預測MBMP 與已解出蛋白質結構之偽單孢菌酯水解酵素之交互作用,呈現出酵素-受質之複合體。藉由檢視此複合體,本研究針對受質結合位附近的胺基酸進行定點突變,試圖提升酯水解酵素對MBMP 的鏡像選擇性,來獲得高光學純度之(S) 型產物。與預期之結果相同,偽單孢菌酯水解酵素對MBMP 的鏡像選擇性不高(E = 20 [S])。經由定點突變,本研究成功篩選到高鏡像選擇性的突變株Phe203Trp (E = 67 [S]) 以及Val161Met (E = 51 [S])。Phe203Trp 是藉由色胺酸上的多電子吲哚環與陰電性的甲基溴基團之間有排斥的電子效應的緣故來增加鏡像選擇性。另外,Val161Met 是藉由甲硫胺酸上的硫原子與碳結合之溴原子間有吸引的靜電作用力的關係來增加鏡像選擇性。出乎意料的,雙突變株V161M; F203W 的 E 值為 63 (S),顯示出結合單突變株的優點沒有加乘效果。另一方面,充分運用電子效應的原理能夠改變酵素的鏡像選擇性,雙突變株V161W; F203L 反轉了酯水解酵素原有的鏡像選擇能力,其對相反的鏡像異構物具有低的鏡像選擇性(E = 2 [R])。
    評估高鏡像選擇性之突變株,雙突變株V161M; F203W 具有高度的E 值且比單突變株Phe203Trp 的催化效率要快,實為有潛力運用在製藥工業上得到高光學純度之(S) 型產物,進一步參與藥物的合成。

    Methyl 3-bromo-2-methylpropionate (MBMP) is a chiral synthon for the preparation of antihypertension drug-Captopril, retroviral protease inhibitors, cyclooxygenase inhibitors, unnatural amino acids, and alkaloids. MBMP is playing important role in pharmaceutical industry. However, the major bottleneck is the esterase catalyzing hydrolysis of MBMP with low-to-moderate enantioselectivity, which cannot obtain single enantiomer with high optical purity.
    In this research, we based on the rational protein engineering and predicted interaction between MBMP and X-ray structure of esterase (EST) from Pseudomonas putida IFO12996 by molecular docking. By the docked EST-MBMP complexes, we focused mutations into the substrate binding site to increase enantioselectivity toward MBMP, getting the (S)-product with high optical purity. As we expected, wild-type EST showed moderate enantioselectivity toward MBMP (E = 20 [S]). By the site-directed mutagenesis, we identified the mutant, Phe203Trp, with high enantioselectivity (E = 67 [S]) and another mutant, Val161Met, also with high enantioselectivity (E = 51 [S]). The Phe203Trp increased enantioselectivity by introducing repulsive electronic effects between the electro-rich indole ring of Trp and the electronegative bromomethyl group. Furthermore, the Val161Met increased enantioselectivity through attractive electrostatic force between the sulfur and carbon-bonded Br. Surprisingly, the E value of double mutant, V161M; F203W, is 63 (S), showing that the individual advantages of single mutant are not additive. On the other hand, change in electronic effects potential controlled enantioselectivity, the double mutant, V161W; F203L, which invert the enantioselectivity of EST, has low enantioselectivity for the opposite enantiomer (E = 2 [R]).
    Assessment of EST mutants, the double mutant, V161M; F203W, has relative high E value but better catalytic efficiency than Phe203Trp, so it is really the strongest competitive candidate for pharmaceutical industry to obtain (S)-product with high optical purity.

    中文摘要………………………………………………………………....i 英文摘要………………………………………………………......……iii 目錄……………………………………………………………………..vi 表目錄…………………………………………………………………..x 圖目錄…………………………………………………………...……...xi 第一章 緒論.............1 1. 光學純化合物於藥物發展之重要性...............................1 2. 生物催化劑應用於藥物合成之潛力…………………………2 2.1 生物催化劑於製備對掌性前驅物之重要性…………..2 2.2 蛋白質工程……………………………………………..4 2.2.1 直接演化法……………………………………...4 2.2.2 理性蛋白質設計………………………………...5 2.2.3 集中式直接演化法……………………………...5 3. 鏡像選擇性……………………………………………………6 3.1 背景介紹………………………………………………..6 3.2 溫度影響立體化學之作用……………………………8 3.3 改善鏡像選擇性的方法………………………………9 4. 酯水解酵素…………………………………………………..10 4.1 背景介紹………………………………………………10 4.2 偽單孢菌酯水解酵素(P. putida IFO12996 esterase, EST) 功能性以及蛋白質結構之探討……………….11 4.3 螢光偽單孢菌酯水解酵素(P. fluorescens aryl esterase, PFE) 功能性以及蛋白質結構之探討……………….12 4.4 偽單孢菌酯水解酵素(EST) 和螢光偽單孢菌酯水解酵素(PFE) 胺基酸序列以及蛋白質結構之比較…..13 5. 多功能對掌性子—MBMP 參與藥物合成之路徑………….13 5.1 MBMP 參與抗高血壓藥物—Captopril 以及反轉錄病毒蛋白酶抑制劑之生合成……………………………13 5.2 MBMP 參與非標準胺基酸—2,3-methanoamino acids 之生合成………………………………………………14 5.3 MBMP 參與抗發炎藥物—COX inhibitor 之生合成.15 6. 實驗目的……………………………………………………...16 第二章 材料和方法………………………………………………….17 1. 利用molecular docking 預測酵素與受質間之交互作 用…………………………………………………………….17 2. 定點突變……………………………………………………..17 3. EST及其突變株之蛋白質表現與包涵體之純化…………..19 4. 突變株活性測試以及Estimated E 值分析………………..22 5. (±)-MBMP 之化學合成……………………………………..24 6. 鏡像選擇性(enantioselectivity) 之測定…………………...25 6.1 生物轉換(biotransfromation)…………………....…...25 6.2 光學純度(enantiomeric excess, %eep) 之測定…….25 6.3 E (enantiomeric ratio) 值的計算……………………...26 7. 酵素活性之測定……………………………………………..26 8. EST 及其突變株催化 (S)-MBMP 和 (R)-MBMP 水解之動力學參數分析…..27 第三章 結果………………………………………………………….28 1. EST 與受質之molecular docking………………………28 2. 定點突變……………………………………………………..28 3. EST及其突變株之蛋白質構型……………………………..28 4. 確認具有活性之突變株以及Estimated E 值……………..29 5. MBMP之1H NMR光譜…………………………………….29 6. 突變株對MBMP 之enantiomeric ratio (E)…………...…..30 7. 突變株催化(S)-MBMP與(R)-MBMP 水解之酵素動力學 參數………………………………………………………….30 8. 突變株對MMB 之enantiomeric ratio (E)………………...30 第四章 討論………………………………………………………….32 1. 利用molecular docking預測酵素與受質間的交互作用…...32 2. 酵素突變對結構和活性之影響………………………..……33 3. 突變株之鏡像選擇性………………………………………..36 4. 遠端突變與接近受質結合位的突變對鏡像選擇性之影響..37 5. 利用酵素動力學分析高鏡像選擇性之突變株……………..38 6. MBMP於EST受質結合位之可能異構體………………...39 7. 突變株Phe203Trp 鏡像選擇性提高之可能分子機制……40 8. 突變株Val161Met 鏡像選擇性提高之可能分子機制……41 9. 電子效應為主導偽單孢菌酯水解酵素對MBMP 鏡像選擇 性的因素之一……………………………………………….41 10. 電子效應對鏡像選擇性之影響............................................43 11. 酯水解酵素運用於MBMP 酵素分割的生產效益評估…44 第五章 結論………………………………………………………….46 第六章 參考文獻…………………………………………………….47 第七章 附錄………………………………………………………….72

    王培筠 (2007)。兩相介質中 Klebsiella oxytoca 酯水解酵素對外消旋 alpha 醇酯之動力分割。博士論文,國立成功大學化學工程學系。
    吳意珣 (2005)。木瓜脂肪分解酵素對 (R,S)-profen 硫酯之動力分割及動態動力分割。博士論文,國立成功大學化學工程學系。
    莊淑如 (2009)。改造具立體選擇性之酯水解酵素活化中心結構以改變其受質專一性。碩士論文,國立成功大學生物科技研究所。
    Adachi, K., Kobayashi, S., and Ohno, M. (1986). Chiral synthons by enantioselective hydrolysis of meso-diesters with pig liver esterase: substrate-stereoselectivity relationships. Chimia 40, 311-314.
    Agranat, I., Caner, H., Caldwell, J. (2002). Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov 1(10), 753-768.
    Ahmad, S., Phillips, R. S., Stammer, C. H. (1992). Inhibition of pig kidney L-aromatic amino acid decarboxylase by 2,3-methano-m-tyrosines. J Med Chem 35(8), 1410-1417.
    Antikainen, N. M., and Martin, S. F. (2005). Altering protein specificity: techniques and applications. Bioorg Med Chem 13(8), 2701-2716.
    Arribas, J., and Castano, J. G. (1990). Kinetic studies of the differential effect of detergents on the peptidase activities of the multicatalytic proteinase from rat liver. J Biol Chem 265(23), 13969-13973.
    Atlan, V., Racouchot, S., Rubin, M., Bremer, C., Ollivier, J., Meijere, A. D., and Salaün, J. (1998). Diastereoselective palladium(0)-catalyzed azidation of 1-alkenylcyclopropyl esters: asymmetric synthesis of (−)-(1R,2S)-norcoronamic acid. Tetra: Asymm 9, 1131-1135.
    Baldwin, J. E., Adlington, R. M., Lajoie, G. A., and Rawlings, B. J. (1985). On the Biosynthesis of Ethylene. Determination of the stereochemical course using modified substrates. J Chem Soc Chem Commun (21), 1496-1498.
    Berglund, P. (2001). Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 18(1), 13-22.
    Bianchi, D., Cesti, P. (1990). Lipase-catalyzed stereoselective thiotransesterification of mercapto esters. J Org Chem 55(21),5657-5659.
    Bloom, J. D., Meyer, M. M., Meinhold, P., Otey, C. R., MacMillan, D., and Arnold, F. H. (2005). Evolving strategies for enzyme engineering. Curr Opin Struct Biol 15(4), 447-452.
    Bornscheuer, U. T. (2002). Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26, 73-81.
    Bornscheuer, U. T., and Pohl, M. (2001). Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5(2), 137-143.
    Brenner, S. (1988). The molecular evolution of genes and proteins: a tale of two serines. Nature 334(6182), 528-530.
    Bushra, R., Aslam, N. (2010). An overview of clinical pharmacology of ibuprofen. J Oman Medical 25(3), 155-161.
    Cadwell, R. C., and Joyce, G. F. (1992). Randomization of genes by PCR mutagenesis. Genome Res (2), 28-33.
    Caldwell, J. (1992). The importance of stereochemistry in drug action and disposition. J Clin Pharmacol 32(10), 925-929.
    Caner, H., Groner, E., Levy, L., Agranat, I. (2004). Trends in the development of chiral drugs. Drug Discov Today 9(3), 105-110.
    Charton, M., Ziffer, H. (1987). Contributions of steric, electrical, and polarizability effects in enantioselective hydrolyses with Rhizopus nigricans: a quantitative analysis. J Org Chem 52(12), 2400-2403.
    Cheeseman, J. D., Tocilj, A., Park, S., Schrag, J. D., Kazlauskas, R. J. (2004). Structure of an aryl esterase from Pseudomonas fluorescens. Acta Crystallogr D Biol Crystallogr 60(Pt 7), 1237-1243.
    Chen, C. S., Fujimoto, Y., Girdaukas, G., Sih, C. J. (1982). Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am Chem Soc 104, 7294-7299.
    Chirumamilla, RR., Marchant, R., Nigam, P. (2001). Captopril and its synthesis from chiral intermediates. J Chem Technol Biotechnol 76, 123-127.
    Choi, K. D., Jeohn, G. H., Rhee, J. S., Yoo, O. J. (1990). Cloning and nucleotide sequence of an esterase gene from Pseudomonas fluorescens and expression of the gene in Escherichia coli. Agric Biol Chem 54(8), 2039-2045.
    Cretich, M., Chiari, M., Carrea, G. (2001). Stereoselectivity synthesis of (S)-(+)-Naproxen catalyzed by carboxyl esterase in a multicompartment electrolyzer. J Biochem Bioph Methods 48(3), 247-256.
    Czeskis, B. A., Moissenkov, A. M. (1989). Synthesis of the S-enantiomer of paniculidine A: absolute R-configuration of the natural paniculidines A and B. J Chem Soc Perkin Trans, 1353-1354.
    Dalby, P. A. (2007). Engineering enzymes for biocatalysis. Recent Pat Biotechnol 1(1), 1-9.
    Diaz-Garcia, M. E., Valencia-Gonzalez, M. J. (1995). Enzyme catalysis in organic solvents: a promising field for optical biosensing. Talanta 42(11), 1763-1773.
    Diéz, J., Frohlich, E. D. (2010). A translational approach to hypertensive heart disease. Hypertension 55(1), 1-8.
    Dubois, R. N., Abramson, S. B., Crofford, L., Gupta, R. A., Simon, L. S., Van De Putte, L. B., Lipsky, P. E. (1998). Cyclooxygenase in biology and disease. FASEB J 12(12), 1063-1073.
    Elferink, V. H. M., Kierlels, J. G. T., Kloosterman, M., Roskam, J. H. (1990). Process for the enantioselective preparation of D-(-)-3-hal-2-methylpropionic acid or derivatives thereof and the preparation of captopril therefrom. EP 369553. [Chem Abstr 114, 41029]
    Elmi, F., Lee, H. T., Huang, J. Y., Hsieh, Y. C., Wang, Y. L., Chen, Y. J., Shaw, S. Y., Chen, C. J. (2005). Stereoselective esterase from Pseudomonas putida IFO12996 reveals alpha/beta hydrolase folds for D-beta-acetylthioisobutyric acid synthesis. J Bacteriol 187(24), 8470-8476.
    Ema, T., Fujii, T., Ozaki, M., Korenaga, T., Sakai, T. (2005). Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism. Chem Commun (Camb)(37), 4650-4651.
    Engstrom, K., Nyhlen, J., Sandstrom, A. G., Backvall, J. E. (2010). Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters. J Am Chem Soc 132(20), 7038-7042.
    Faber, K., Ottolina, G., Riva, S. (1993). Selectivity-enhancement of hydrolase reactions. Biocatal Biotransform 8(2), 91-132.
    Fadel, A., Khesrani, A. (1998). A straightforward synthesis of both enantiomers of allo-norcoronamic acids and allo-coronamic acids, by asymmetric Strecker reaction from alkylcyclopropanone acetals. Tetra: Symm 9, 305-320.
    Galeazzi, R., Massaccesi, L. (2010). Insight into the binding interactions of CYP450 aromatase inhibitors with their target enzyme: a combined molecular docking and molecular dynamics study. J Mol Model 17.
    Hedstrom, L. (2002). Serine protease mechanism and specificity. Chem Rev 102(12), 4501-4524.
    Heikinheimo, P., Goldman, A., Jeffries, C., Ollis, D. W. (1999). Of barnowls and bankers: a lush variety of α/β hydrolases. Struct 7(6), 141-161.
    Hellinga, H. W. (1997). Rational protein design: combining theory and experiment. Proc Natl Acad Sci 94(19), 10015-10017.
    Hill, R. K., Prakash, S. R., Wiesendanger, R., Angst, W., Martinoni, B., Arigoni, D., Liu, H. W., Walsh, C. T. (1984). Stereochemistry of the enzymatic ring opening of 1-aminocyclopropanecarboxylic acid J Am Chem Soc 106(3), 795-796.
    Holmberg, E., Hult, K. (1992). Alcohol induced reversal of enantioselectivity in a lipase catalyzed resolution of 2-chloropropionic acid. Biocatal 5(4), 289-296.
    Holmquist, M. (2000). Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1(2), 209-235.
    Horsman, G. P., Liu, A. M., Henke, E., Bornscheuer, U. T., Kazlauskas, R. J. (2003). Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3bromo-2-methylpropanoate and ethyl 3phenylbutyrate. Chemistry 9(9), 1933-1939.
    Hult, K., Berglund, P. (2003). Engineered enzymes for improved organic synthesis. Curr Opin Biotechnol 14(4), 395-400.
    Hult, K., Norin, T. (1992). Enantioselectivity of some lipases: control and prediction. Pure Appl Chem 64(8), 1129-1134.
    Ichihara, A., Shiraishi. K., Sato, H., Sakamura, S., Nishiyama, K., Sakai, R., Furusaki, A., Matsumoto, T. (1977). The structure of coronatine. J Am Chem Soc 99(2), 636-637.
    Jaeger, K. E., Eggert, T. (2004). Enantioselective biocatalysis optimized by directed evolution. Curr Opin Biotechnol 15(4), 305-313.
    Janes, L. E., Löwendahl, A. C., Kazlauskas, R. J. (1998). Quantitative screening of hydrolase libraries using pH indicators: identifying active and enantioselective hydrolases. J Chem Eur 4(11), 2324-2331.
    Jochens, H., Bornscheuer, U. T. (2010). Natural diversity to guide focused directed evolution. ChemBioChem 11(13), 1861-1866.
    Jones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3), 727-748.
    Jones, J. B., Mehes, M. M. (1979). Effects of organic cosolvents on enzyme stereospecificity. The enantiomeric specificity of α- chymotrypsin is reduced by high organic solvent concentrations. Can J Chem 57(17), 2245-2248.
    Keinan, E., Hafeli, E. K., Seth, K. K., Lamed, R. (1986). Thermostable enzymes in organic synthesis. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. J Am Chem Soc 108(1), 162-169.
    Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Zaheer UI, Haq., Mesaik, M. A., Iqbal Choudhary, M. (2011). Synthesis of novel inhibitors of beta-glucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular docking. Bioorg Med Chem, 1-9.
    Koga, Y., Kato, K., Nakano, H., Yamane, T. (2003). Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. J Mol Biol 331(3), 585-592.
    Kramer, B., Rarey, M., Lengauer, T. (1999). Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37(2), 228-241.
    Krebsfanger, N., Schierholz, K., Bornscheuer, U. T. (1998).Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens towards alcohols and carboxylic acids. J Biotechnol 60(1-2), 105-111.
    Ladányi, L., Sztruhár, I., Slége, P., Vereczekey-Donáth, G. (1987). Determination of the enantiomeric composition of chiral carboxylic acids using chiral derivatization and HPLC. Chromatogr 24, 477-481.
    Leffingwell, J. C. (2003). Chirality & Bioactivity I.: Pharmacology. Leffingwell Reports 3(1), 1-27.
    Lommerse, J. P. M., Stone, A. J., Taylor, R., Allen, F. H. (1996). The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J Am Chem Soc 118, 3108-3116.
    Ling, M. M., Robinson, B. H. (1997). Approaches to DNA mutagenesis: an overview. Anal Biochem 254(2), 157-178.
    Liu, A. M. F., Somers, N. A., Kazlauskas, R. J., Brush, T. S., Zocher, F., Enzelberger, M. M., Bornscheuer, U. T., Horsman, G. P., Mezzetti, A., Schmidt-Dannert, C., Schmid, R. D. (2001). Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Ophiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetra: Asymm 12, 545-556.
    McConathy, J., Owens, M. J. (2003). Stereochemistry in Drug Action. Prim Care Companion J Clin Psychiatry 5(2), 70-73.
    McKellar, Q. (2009). Mirrors and gloves: the clinical relevance of chirality. Vet J 181(3), 209-210.
    Mitchell, R. E. (1985). Norcoronatine and N-coronafacoyl-L-valine, phytotoxic analogues of coronatine produced by a strain of Pseudomonas syringae pv. glycinea. Phytochemistry 24(7), 1485-1487.
    Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16), 2785-2791.
    Nagasawa, T., Shimizu, H., Yamada, H. (1993). The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol (40), 189-195.
    Naturalium, R. (2010). Protein engineering of a Pseudomonas fluorescens esterase alteration of substrate specificity and stereoselectivity. Thesis (unpublish).
    Ness, J. E., Welch, M., Giver, L., Bueno, M., Cherry, J. R., Borchert, T. V., Stemmer, W. P., Minshull, J. (1999). Nat Biotechnol 17(9), 893-896.
    Otten, L. G., Hollmann, F., Arends, I. W. (2010). Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Trends in Biotechnology 28(1), 46-54.
    Park, S., Morley, K. L., Horsman, G. P., Holmquist, M., Hult, K., Kazlauskas, R. J. (2005). Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chemistry & Biology 12(1), 45-54.
    Patel, R., Hanson, R., Goswami, A., Nanduri, V., Banerjee, A., Donovan, M. J., Goldberg, S., Johnston, R., Brzozowski, D., Tully, T., Howell, J., Cazzulino, D., Ko, R. (2003). Enzymatic synthesis of chiral intermediates for pharmaceuticals. J Ind Microbiol Biotechnol 30(5), 252-259.
    Patel, R. N. (2008). Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord Chem Rev 252, 659-701.
    Philips, R. S. (1996). Temperature modulation of the stereochemistry of enzymatic catalysis: prospects for exploitation. J Tibtich 14, 13-16.
    Reetz, M. T. (2004). Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc Natl Acad Sci U S A 101(16), 5716-5722.
    Reetz, M. T. (2007). Controlling the selectivity and stability of proteins by new strategies in directed evolution: the case of organocatalytic enzymes. Ernst Schering Found Symp Proc(2), 321-40.
    Reetz, M. T., Peyralans, J. J., Maichele, A., Fu, Y., Maywald, M. (2006). Directed evolution of hybrid enzymes: Evolving enantioselectivity of an achiral Rh-complex anchored to a protein. Chem Commun (Camb)(41), 4318-4320.
    Rotticci, D., Rotticci-Mulder, J. C., Denman, S., Norin, T., Hult, K. (2001). Improved enantioselectivity of a lipase by rational protein engineering. Chembiochem 2(10), 766-770.
    Sakimae, A., Ozaki, E., Toyama, H., Ohsuga, N., Numazawa, R., Muraoka, I., Hamada, E., Ohnishi, H. (1993). Process conditions for production of D-β-acetylthioisobutyric acid from methyl DL-β-acetylthioisobutyrate with the cells of Pseudomonas putida MR-2068. Biosci Biotechnol Biochem 57(5), 782-786.
    Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tam, S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., Brands, J., Devine, P. N., Huisman, G. W., Hughes, G. J. (2010). Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329(5989), 305-309.
    Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., Witholt, B. (2001). Industrial biocatalysis today and tomorrow. Nature 409(6817), 258-268.
    Schmidt, M., Bornscheuer, U. T. (2005). High-throughput assays for lipases and esterases. Biomol Eng 22(1-3), 51-56.
    Schmidt, M., Hasenpusch, D., Kahler, M., Kirchner, U., Wiggenhorn, K., Langel, W., Bornscheuer, U. T. (2006). Directed evolution of an esterase from Pseudomonas fluorescens yields a mutant with excellent enantioselectivity and activity for the kinetic resolution of a chiral building block. Chembiochem 7(5), 805-809.
    Shaw, S. Y., Chen, Y. J., Ou, J. J., Ho, L. (2006). Enzymatic resolution of methyl DL-β-acetylthioisobutyrate and DL-β- acetylthioisobutyramide using a stereoselective esterase from Pseudomonas putida IFO12996. J Mol Catal B: Enzym 38, 163-70.
    Sikorski, J. A., Getman, D. P., Decrescenzo, G. A., Devadas, B., Freskos, J. N., Lu, H. T., McDonald, J. J. (1997). WO 9718205. [Chem Abstr 127, 65754].
    Smith, C. G., Vane, J. R. (2003). The discovery of captopril. FASEB J 17(8), 788-789.
    Stemmer, W. P. C. (1994). DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc Natl Acad 91, 10747-10751.
    Straathof, A. J. J., Jongejan, J. A. (1997). The enantiomeric ratio: origin, determination and prediction. Enzyme Microb Technol 21, 559-571.
    Tait, A., Colorni, E., Bella, D. M. (1996). Stereospecific synthesis of 3-[(2H-l,2,4-Benzothiadiazine-1,l-dioxide-3-yl)thio]-2-methylpropanoic acids. Tetra: Asymm 7(9), 2703-2706.
    Tomaszewski, J., Rumore, M. M. (1994). Stereoisomeric drugs: FDA'S policy statement and the impact on drug development. Drug Dev Ind Pharm 20(2), 119-139.
    Triggle, D. J. (1997). Stereoselectivity of drug action. DDT 2(4), 138-147.
    Yang, J. M., Chen, C. C. (2004). GEMDOCK: a generic evolutionary method for molecular docking. Protein 55(2), 288-304.
    Zaman, M. A., Oparil, S., Calhoun, D. A. (2002). Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov 1(8), 621-636.
    Zhang, Y., Wu, D. R., Wang-Iverson, D. B., Tymiak, A. A. (2005). Enantioselective chromatography in drug discovery. Drug Discov Today 10(8), 571-577.
    Zheng, R. C., Zheng, Y. G., Shen, Y. C. (2007). A simple method to determine concentration of enantiomers in enzyme-catalyzed kinetic resolution. Biotechnol Lett 29(7), 1087-1091.
    Zimmermann, M., Westwell, M. S., Greenfield, S. A. (2009). Impact of detergents on the activity of acetylcholinesterase and on the effectiveness of its inhibitors. Biol Chem 390(1), 19-26.

    下載圖示 校內:2016-08-15公開
    校外:2016-08-15公開
    QR CODE