簡易檢索 / 詳目顯示

研究生: 蔡志偉
Tsai, Chih-Wei
論文名稱: 表面聲波濾波器交指叉電極的參數萃取與時域特性量測
Parameter Extraction and Time Domain Characterization of IDT in Surface Acoustic Wave Filter
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 90
中文關鍵詞: 模態耦合理論表面聲波元件參數萃取壓電材料
外文關鍵詞: piezoelectric material, SAW devices, TDR, MEMS, Coupling of Mode
相關次數: 點閱:110下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文研究的對象為週期24 micro meter、金屬線寬6 micro meter、且金屬比為0.5的交指叉電極與其構成的表面聲波元件。特別嘗試由聲波在時域上所產生電壓信號來探討表面聲波元件的行為,得到主要的模擬參數,以進行模態耦合理論的分析模擬。
      理論方面採用B.P. Abbott所提出的模態耦合理論作為模擬分析表面聲波元件的依據。在實驗方面搭配微機電系統技術,在三種壓電材料基板上 (ST-cut Quartz, YZ-cut LiNbO3, 128°Y-cut LiNbO3) 實地製作設計簡單的IDT結構(如:uniform overlap、few pair IDT),且利用LCR Meter量測、高頻探針、網路分析儀量、與時域反射分析儀等儀器設備進行量測,並配合萃取方式來求得理想參數值。
      本文分別從文獻與實驗的量測,最後進行參數萃取,發現在高壓電性基板上可以得到相當程度吻合的耦合參數。經由時域反射分析儀與時域信號分析研究,有助於了解表面聲波元件波傳特性。

      Surface Acoustic Wave device is a useful tool for filtering the electrical signal in highly frequency domain. Also, its sensitivity of mass loading makes the SAW device a powerful sensor in medical detection and other applications. In the past few decades, SAW device have been widely investigated from all different aspects including theoretical analysis, numerical simulation, fabrication technology, and experimental testing and measurements.
      Most of these investigations on SAW devices are in frequency domain. Parameters measured by Network Analyzer are used to simulate the SAW device. However, some of parameters are more suitable to be measured in time domain rather than in frequency domain. Therefore, in this thesis, the characteristic of SAW device is investigated in time domain in conjunction with Coupling of Mode simulation theory presented by B.P. Abbott et al.
      For analyzing the time domain response of SAW device, the Time Domain Reflector (TDR) is used to measure the parameters of SAW in time domain for simulations. Besides, the SAW devices are fabricated on three kinds of piezoelectric material substrates by MEMS technology. From the experiment results, we found that the simulation results are in good agreement with experimental data.

    摘要...........................................I Abstract.......................................II 誌謝...........................................III 目錄...........................................IV 表目錄.........................................VII 圖目錄.........................................VIII 符號說明.......................................XII 第一章 導論....................................1 1-1研究背景與目的..............................1 1-2文獻回顧....................................2 1-3論文架構....................................4 第二章 表面波特性與原理........................5 2-1壓電效應....................................5 2-1.1正壓電效應................................5 2-1.2逆壓電效應................................5 2-1.3壓電基板特性..............................6 2-2表面聲波濾波器原理..........................7 2-3表面聲波元件特性............................8 2-3.1表面聲波元件的二次效應....................8 2-3.2插入損失與金屬電極柵欄效應................11 第三章 表面聲波濾波器理論與實驗設計............14 3-1模態耦合理論................................14 3-1.1非耦合一階波傳方程式......................14 3-1.2波傳損失..................................16 3-1.3柵欄反射..................................18 3-1.4電性轉換..................................21 3-1.5匯流排電流................................23 3-1.6參數化簡..................................27 3-1.7[P]矩陣推導...............................30 3-2實驗設計參數說明............................33 3-2.1壓電基板的選擇............................34 3-2.2光罩的設計................................35 3-2.2.1量測金屬的穿透量與反射量................35 3-2.2.2量測金屬的反射量........................36 3-2.2.3量測自由表面波速、電極擾動後波速及波傳衰減...............................................37 3-2.2.4指叉狀電極間的電容值....................38 3-3耦合理論參數定義............................39 3-3.1波傳損失..................................40 3-3.2反射係數..................................40 3-3.3電性轉換係數..............................41 3-3.4金屬薄膜電阻..............................41 3-3.5單位長度電容..............................41 3-3.6表面波波速................................42 第四章 實驗方法................................43 4-1量測元件製程................................43 4-1.1晶片清洗..................................44 4-1.2金屬蒸鍍..................................45 4-1.3微影製程..................................46 4-1.3.1塗佈光阻................................46 4-1.3.2 曝光...................................48 4-1.3.3 顯影...................................49 4-1.4金屬蝕刻..................................50 4-2實驗量測架構................................51 4-3時域反射儀原理..............................52 第五章 實驗結果分析與參數萃取..................55 5-1量測特性結果分析與比較......................55 5-1.1交叉電極對靜電容..........................55 5-1.2壓電基板波傳衰減量........................58 5-1.3金屬擾動波速、自由表面波速................59 5-1.4金屬反射量與穿透量........................66 5-2耦合理論參數萃取............................73 5-2.1參數比較..................................73 第六章 結論與未來展望..........................78 6-1結論........................................78 6-2未來展望....................................79 參考文獻.......................................80

    [1]L. Rayleigh, “On Waves Propagating along the Plane Surface of an Elastic Solid,” Pro. London Math. Soc., vol. 7, pp. 4-11, 1885.
    [2]R.M. White and F.W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett., vol. 17, pp. 314-316, 1965.
    [3]W.P. Mason, Electromechanical Transducers and Wave Filters, van Nostrand Company, 2nd Edition, 1948.
    [4]W.P. Mason, Physical Acoustics, vol. 1A, Academic Press, 1964
    [5]W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder and H.J. Show, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-17, pp. 856-864, 1969.
    [6]W.R. Smith, “Experimental Distinction Between Crossed-Field and In-Line Three-Port Circuit Models for Interdigital Transducers,” IEEE Trans. on Microwave Theory and Techniques, pp.960-964, 1974.
    [7]R.H. Tancrell and M.G. Holland, “Acoustic Surface Wave Filters,” Proc. IEEE, vol. 59, pp. 393-409, 1971.
    [8]C.S. Hartmann, D.T. Bell, Jr. and R.C. Rosenfeld, “Impulse response model design of acoustic surface-wave filters,” IEEE Trans. on Microwave Theory and Techniques, vol. MTT-21, pp. 162-175, 1973.
    [9]J.R. Pierce, “Coupling-of-modes of propagation,” J. Appl. Phys., vol. 25, pp. 179-183, 1954.
    [10]P.S. Cross and R.V. Schmidt, “Coupled Surface-Acoustic-Wave Resonators,” Bell System Tech. Journal, vol. 56, pp. 1447-1482, 1977.
    [11]H.A. Haus, “Modes in SAW grating resonators,” J. Appl. Phys., vol. 48, pp. 4955-4961, 1977.
    [12]C.S. Hartmann, P.V. Wright, R.J. Kansy and E.M. Garber, “An analysis of SAW interdigital transducers with internal reflections and the application to the design of single-phase unidirectional transducers,” Proc. IEEE Ultrasonics Symp., pp. 29-34, 1982.
    [13]D.P. Chen and H.A. Haus, “Analysis of Metal-Strip SAW Gratings and Transducers,” IEEE Trans. on Sonics and Ultrason., vol. SU-26, pp. 395-408, 1985.
    [14]P.V. Wright, “A new generalized modeling of SAW transducers and gratings,” Pro. 43th Frequency Control Symp., pp.596-605, 1989.
    [15]B.P. Abbott, C.S. Hartmann and D.C. Malocha, “A Coupling-of-Modes Analysis of Chirped Transducers Containing Reflective Electrode Geometries,” IEEE Ultrason. Symp., pp. 129-134, 1989.
    [16]B.P. Abbott, A Coupling-of-Modes Model for SAW Transducers with Arbitrary Reflectivity Weighting, the Department of Electrical Engineering at the University of Central Florida Orlando, Florida, 1989.
    [17]C.K. Campell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, New York : Academic Press, 1998.
    [18]陳建宏, 通訊用壓電陶瓷材料及元件, 工業材料115期, 1996。
    [19]Ken-ya Hashimoto, Surface Acoustic Wave Devices in Telecommunications: modeling and simulation, Springer, 2000.
    [20]K.M. Lakin, “Electrode Resistance Effects in Interdigital Transducers,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-22, pp.418-424, 1974.
    [21]陳玉衡, 表面聲波元件之製成、量測與應用, 國立成功大學電機工程研究所碩士論文, 民國90年。
    [22]P. Plessky and J. Koskela, “Coupling-of-modes Analysis of SAW Devices”, International Journal of High Speed Electronics & Systems, Vol. 10, Issue 4, Dec. 2000, p867, 81p
    [23]V.P. Plessky, J. Koskela and M.M. Salomaa, “SAW/LSAW COM Parameter Extraction from Computer Experiments with Harmonic Admittance of a Periodic Array of Electrodes,” IEEE Ultrason., Ferroelec., Freq. Contr., vol.46, pp.806-816, 1999.
    [24]D.P. Morgan, Surface-wave devices for signal processing, Elsevier, 1985.
    [25]T. Thorvaldsson, “Analysis of The Natural Single Phase Unidirectional SAW Transducer,” IEEE Ultrason. Symp., pp. 91-96, 1989.
    [26]T. Thorvaldsson and B.P. Abbott, “Low Loss SAW Filters Utilizing the Natural Single Phase Unidirectional Transducer (NSPUDT),” IEEE Ultrason. Symp., pp. 43-48, 1990
    [27]B.P. Abbott and D.C. Malocha, “Closed Form Solutions for Multistrip Coupler Operation Including the Effects of Electrode Resistivity,” IEEE Ultrason. Symp., pp. 25-30, 1990.
    [28]B.P. Abbott, “A Derivation of The Coupling-of-Modes Parameters Based on The Scattering Analysis of SAW Transducers and Gratings,” IEEE Ultrason. Symp., pp. 5-10, 1991.
    [29]B.P. Abbott, C.S. Hartmann and D.C. Malocha, “Transduction Magnitude and Phase for COM Modeling of SAW Devices,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 39, pp. 54-60, 1992.
    [30]劉黃傑, 以時域特性與基因演算法重建耦合傳輸線等效電路之研究,淡江大學電機工程研究所碩士論文, 民國92年。
    [31]何文博, 時域最小平方法萃取等效電路模型之研究, 國立中山大學電機工程研究所碩士論文, 民國89年。

    下載圖示 校內:立即公開
    校外:2004-08-06公開
    QR CODE