簡易檢索 / 詳目顯示

研究生: 林建宏
Lin, Jian-Hong
論文名稱: 基板溫度與硒蒸氣壓對CuInSe2 / In2Se3 形成的影響之研究
A Study of Substrate Temperature and Selenium’s Vapor Pressure Effects on CuInSe2 / In2Se3 Formation
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 84
中文關鍵詞: 二銦化三硒二硒銅銦基板溫度共蒸鍍蒸氣壓硒化薄膜太陽能電池
外文關鍵詞: In2Se3, CuInSe2, Substrate temperature, Co-evaporation, Vapor pressure, Selenization, Thin film solar cell
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究利用調變基板溫度、蒸氣壓以及基板與蒸鍍源的距離…等等條件下,去改變CIS(220,204)與CIS(112)之比例,且大量降低硒粉的使用量更進一步降低製程成本。最後,當銅硒非結晶性的銅硒薄膜沉積在(110/300)為主的In2Se3薄膜上,並且進行高溫的硒化後,可有效增加CIS(220,204)晶向的形成,此種新製程方法可應用於業界。
    論文一開始會先使用兩階段式共蒸鍍,接下來調整不同的基板溫度、K-cell溫度最後改變機板與蒸鍍源的距離來增加硒的蒸氣壓。同時吾人也研究了在不同蒸氣壓與不同基板溫度的銦硒與銅硒共蒸鍍製程,藉由XRD分析得知銦硒共蒸鍍在擁有較大的蒸氣壓情況下可得到(110/300)晶向為主的In2Se3薄膜,此晶向之薄膜有助於(220,204)晶向的CIS薄膜生長。此外銅硒共蒸鍍在較大蒸氣壓或較高基板溫度下可以得到Cu2-xSe的銅硒二元化合物,且在本實驗中也證實此種二元相在與(110/300)晶向為主的In2Se3薄膜反應所形成的CIS薄膜具有較高的CIS(220,204)/CIS(112)比例。
    結合以上的實驗數據,我們使用了銅硒薄膜沉積在(110/300)為主的In2Se3薄膜上再進行高溫的硒化的特殊製程進一步提升了CIS(220,204)與CIS(112)的比例,且此種製程更具有可以應用在業界的潛能進而發展出(220,204)晶向為主的大面積二硒銅銦薄膜太陽能電池。

    In this thesis, the main purpose is to investigate the (220,204)-textured formation by adjusting various conditions, thus apparently decreasing the content of selenium powder to obtain the cost down. Additionally, the amorphous Cu-Se thin film is deposited on the (110,300)-oriented In2Se3 precursor, can effectively enhance the formation of (220,204) -oriented CIS texture during the selenization at high temperature. Finally , this novel process can be employed for the solar industry.
    The process adopts the traditional 2-step co-evaporation, and simultaneously adjusts several different parameters such as substrate temperature, k-cell’s temperature and selenium’s vapor pressure. Eventually, the distance of source to substrate is diminished for increasing the selenium’s vapor pressure. We simultaneously study the process of Cu-Se and In-Se co-evaporation at different vapor pressure and substrate temperature. The (110,300)-oriented In2Se3 thin films can be obtained under large vapor pressure of selenium and this orientation of In2Se3 is preferred to the formation of (220,204)-textured CIS thin films. Furthermore, the Cu2-xSe binary phase can be formed at larger vapor pressure or higher substrate temperature by 2-step co-evaporation. The results of XRD analysis also verify that the CIS film films does clearly achieve the higher ratio of (220,204)/(112) through the formation of Cu2-xSe and (110,300)-oriented In2Se3.
    The particular process that I mentioned at first paragraph has demonstrated the selenization at high temperature to increase the ratio of (220,204)/(112) as well. This process has the potential of manufacturing application to develop the large-area CuInSe2 of (220,204)-preferred thin film solar cell.

    Contents Chinese abstract……………………………I English abstract……………………………III List of Tables……………………………IX List of Figures……………………………X Chapter 1 Introduction 1.1 Why We Need PV…………………………………1 1.2 Brief History of CIS-like Solar Cells………………3 1.3 Electrical Properties………………………………4 1.3.1 How Solar Cell work……………………………4 1.3.2 Solar Cell I-V Characteristics……………………6 1.3.3 Parasitic Resistance Effects………………………10 1.4 Electrical Properties……………………………12 1.4.1 Solar Spectrum and Air Mass..………………………12 1.4.2 Spectral Response and Quantum Efficiency…………15 1.4.3 The Antireflection Coating Effect……………………18 Chapter 2 Introduction to CIS-like solar cells…………19 2.1 The properties of chalcopyrite-based materials…………20 2.2 Development of CIS&CIGS thin film solar cells…………25 2.3 Advantage of Cu(In,Ga)Se2 of (220/204) orientation……………………………33 2.4 Compositional analysis…………………………………36 Chapter 3 Experimental Scheme ……………………………37 3.1 The Purpose of Experiment ……………………………37 3.2 Experiment procedures…………………………………38 3.3 Process equipments……………………………………39 3.3.1 Sputter system……………………………………………39 3.3.2 Evaporator system……………………………………41 3.3.3 Annealing system…………………………………………42 3.4 Analysis equipments……………………………………44 3.4.1 X-ray diffraction (XRD) …………………………………44 3.4.2 Scanning Electron Microscope (SEM) ………………………46 3.4.3 X-ray energy dispersive (EDS) ………………………48 Chapter 4 Results and Discussion………………………49 4.1 The 2-step CIS co-evaporation………………………49 4.2 The 2-step CIS co-evaporation by fixing the amountof source…………………53 4.3 The 2-step CIS co-evaporation by refilling the powder of selenium…………………55 4.4 The In-Se co-evaporation at different vapor pressure and distance of source to substrate………………58 4.5 The Cu-Se co-evaporation at different vapor pressure and substrate temperature…………………………62 4.6 The 2-step CIS co-evaporation at different conditions by refilling the powder of selenium…………66 4.7 Preheating the substrate before Cu-Se co-evaporation……………………………………72 4.8 Selenization of Cu-Se precursor on (110)&(300)-oriented In2Se3 film………………………………………………………………………………74 4.9 The 2-step co-evaporation by using the new k-cell…76 Chapter 5 Conclusions and Future works 5.1 ……………77 Conclusions……………………………………………………77 5.2 Future works …………………………………………………78 References……………………………………………………………79

    Reference:
    [1] K. Ito, Prospect of Fossil Fuels, Energy for 21st Century, Proceedings of the Third Annual Meeting for Nuclear Fusion, Institute for Nuclear Reactors, TIT, 49—64( 2000).
    [2] H. Hahn et al., Z. Anorg. Allg. Chem. 271 ,228-230 (1953).
    [3] S. Wagner, J. Shay and H. Kasper, Appl. Phys. Lett. 25, 434-435 (1974).
    [4] R.A. Micheleson, and W.S. Chen, Appl. Phys. Lett. 36, 89-90 (1980).
    [5] K.C. Mithchell, J. Ermer, and D. Pier, Conference Record of the 20th IEEE Photovoltaics Specialists Conference, Las Vegas, 1384-1389 (1988).
    [6] R.D. Wieting, Conference Record of the 29th IEEE Photovoltaics Specialists Conference, New Orleans, 478-483 (2002).
    [7] V. Probst , W. Stetter, W. Riedl, H. Vogt, M. Wendl, H. Calwer, S. Zweigart, K. D. Ufert, B. Freienstein, H. Cerva and F. H. Karg , Thin Solid Films 387, 262-267 (2001).
    [8] B. Dimmler, M. Powalla and H.W. Schock , Prog. Photovolt.: Res.Appl.10,149-157 (2002).
    [9] K. Kushiya ,Thin solid films 387, 257-261 (2001).
    [10] T. Negami, T. Satoh, Y. Hashimoto, S. Nishiwaki, S.Shimakawa and S. Hayashi, Solar Energy Mat. Sol. cells 67, 1-9 (2001).
    [11] 5. M. Sze and K. K. Ng, “Physics of Semiconductor Devices”, Wiley-Interscience: John Wiley & Sons, 3ed, New York, (2007).
    [12] M. Green, “solar cell : Operating Principles , Technology ,and System Application “, Prentice Hall ,Englewood Cliffs ,NJ, 85-102 (1982).
    [131 T. Markvart and L. Castaner, “Solar cell materials, manufacture and operation”, Elsevier Ltd, Tokyo, Japan, 13 (2005).
    [14] “Solar spectra”, http : //rredc .nrel . gov/solar/spectra/ (2000).
    [15] K. Ramanathan, G. Teeter, J. C. Keane and R. Noufi, Thin Solid Films 480—48 1 , 499— 502 (2005).
    [16] A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kahn, D. Rudmann and A. N. Tiwari, Prog. Photovolt: Res. Appl. 12,93—111(2004).
    [17] T. N. U, Thin Solid Films 334, 192-195 (1998).
    [18] A. Luque and S. Hegedus, “Handbook of photovoltaic science and engineering”, John Wiley & Sons , England, UK, (2003).
    [19] J. Muller, J. Nowoczin and H. Schmitt, Thin Solid Films 496 364-370 (2006).
    [20] 5. B. Zhang, S. H. Wei and A. Zunger, Physiacal review letters 78, 21.
    [211 M. A. Contreras, J. R. Tuttle, A. Gabor, A. Tennant, K. Ramanathan,
    S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield and R. Noufi, Conference Record of the 24th IEEE Photovoltaics Specialists Conference, Waikoloa, HI, 68—75 (1994).
    [221 M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, Prog. Photovolt: Res. Appl. 7,311-316(1999).
    [231 K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Prog. Photovolt: Res. Appl. 11 , 225-230 (2003).
    [241 M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Prog. Photovolt: Res. Appl. 13 209-2 16 (2005).
    [251 0. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees and P. Barvinschi, Sol. Energy Mater. Sol. Cells 93 11-14 (2009).
    [261 F. Jiang and J. Feng, Thin Solid Films 515, 1950-1955 (2006).
    [271 F. 0. Adurodija, S. K. Kim, S. D. Kim, J. S. Song, K. H. Yoon, and B. T. Ahn, Sol. Energy Mater. Sol Cells 55 , 225-236 (1998).
    [281 W. Li, Y. Sun, W. Liu and L. Zhou, Sol. Energy 80, 191-195 (2006).
    [291 R. Caballero and C. Guillen, Sol. Energy Mater. Sol. Cells 86, 1-10 (2005).
    [301 R. Caballero and C. Guillen, Thin Solid Films 403-404, 107-111 (2002).
    [311 C. Guillen and J. Herrero, Vacuum 67 , 659-664 (2002).
    [321 T. L. Chu ,S. S. Chu and J. Electrochem, Soc 131, 2182-2185 (1984).
    [331 A. Gupta and S. Isomura, Sol. Energy Mater. Sol Cells 53 ,385-401 (1998).
    [341 5. D. Kim, H. J. Kim, K. H. Yoon and J. Song, Sol. Energy Mater. Sol. Cells 62, 3 87-368 (2000).
    [351 M.A. Contreras, K.M. Jones, L. Gedvilas, and R. Matson, Presented at the 16th European Photovoltaic Solar Energy Conference and Exhibition, Scotland, U.K. , (2000).
    [361 G. Hanna, T. Glatzel, S. Sadewasser, N. Ott, H.P. Strunk, U. Rau, J.H. Werner, Appl. Phys. A 82, 1—7 (2006).
    [371 T. Schlenker, V. Laptev, H.W. Schock, J.H. Werner, Thin Solid Films 480—48 1, 29—32 (2005).
    [381 G. Hanna, J. Mattheis, V. Laptev, Y. Yamamoto, U. Rau, H.W. Schock, Thin Solid Films 431 —432 , 3 1—36 (2003).
    [391 Takahiro Mise, Tokio Nakada, Sol. Energy Mater. Sol Cells 93, 1000-1003 (2009).
    [40] I.L. Eisgruber, R.E. Treece, C. Marshall, J.R. Engel, IEEE Xplore (2000).
    [41] J. A. Groenink and P. H. Janse, Z. Phys. Chem. 110, 17 (1978).
    [42] R. Noufi, Y. Yan, K. Jones, M. Al-Jassim, B. Keyes, J. Alleman, and K. Ramanathan , J. Abu-Shama ,Presented at the 29th IEEE PV Specialists Conference, New Orleans, Louisiana, (2002).
    [43] J. Abu-Shama, S. Johnston, R. Ahrenkiel, and R. Noufi, presented at the 29th IEEE PV Specialists Conference, New Orleans, Louisiana, (2002).
    [44] A. Gupta and S. Isomura, Sol. Energy Mater. Sol. Cells 53, 385-401 (1998).
    [45] Miguel A. Contreras, Brian Egaas, David King, Amy Swartzlander, Thorsten Dullweber, Thin Solid Films 361-362, 167-171 (2000).
    [46] Olle Lundberg, Marika Bodegard, Jonas Malmstrom and Lars Stolt, Prog. Photovolt: Res. Appl. 11, 77—88 (2003).
    [47] V.F. Gremenok, E.P. Zaretskaya, V.B. Zalesski, K. Bente, W. Schmitz, R.W. Martin, H. Moller, Sol. Energy Mater. Sol. Cells 89, 129—137. (2005).
    [48] H. Bubert and H. Jenett, “Surface and thin film analysis - principles, instrumentation, applications”, Wiley-VCH, Weinheim, (2002).
    [49] M. Ohring, “Materials science of thin films”, Academic Press , FL, USA, (2002).
    [50] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Ronig, C. E. Lyman, C. Fiori and E. Lifshin, “Scanning electron microscope and X-ray microanalysis”, 21K ed. Plenum, New York (1992).
    [51] Shogo Ishizuka, Akimasa Yamada, Hajime Shibata, Paul Fons, Keiichiro Sakurai,Koji Matsubara, Shigeru Niki , Sol. Energy Mater. Sol. Cells 93, 792-796 (2009).
    [52] T. L. Chu and S. S. Chu, J. Electrochem. Soc 131 (1984) 2182-2185.
    [53] L stolt, M .Bodegard, J .Hedstrom, J. Kessler, M . Ruckh, K.O. Velthaus and H.W. Schock, Proceedings of the 11th ECPVSEC, 120 (1993).

    下載圖示 校內:2013-07-07公開
    校外:2013-07-07公開
    QR CODE