簡易檢索 / 詳目顯示

研究生: 江敏弘
Chiang, Ming-Hung
論文名稱: 光伏應用上之多元硫族化合物半導體的合成及特性研究
Synthesis and characterization of multinary chalcogenide semiconductors for photovoltaic applications
指導教授: 林文台
Lin, Wen-Tai
共同指導教授: 傅耀賢
Fu, Yaw-Shyan
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 198
中文關鍵詞: 合成特性多元硫族化合物半導體
外文關鍵詞: Synthesis, characterization, multinary chalcogenide semiconductors
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗在Cu2ZnSnSe4(CZTSe)相關部分,分別在高壓釜中使用溶熱法以及以濕式化學法在迴流系統中合成CZTSe以及Cu2CdSnSe4(CCTSe)奈米晶,探討不同的反應溶劑、反應前驅物的莫爾比、反應溫度、反應時間及不同的反應前驅物對合成CZTSe以及CCTSe奈米晶的影響以及產物的光學性質。CZTSe、CCTSe在高壓釜的反應中添加聯胺,可以較未添加聯胺的反應更易獲得較純的產物,減少二元(ZnSe、Cu2-xSe、CdSe)及三元(Cu2SnSe3)雜相的生成,這是因為聯胺具有使金屬硫系化合物在溶熱反應中降維度(dimensional reduction)之功能有,添加聯胺明顯有助於反應。而濕式化學法在迴流系統中合成CZTSe系列,使用醋酸鋅作為鋅的前驅物相較以氯化鋅為前驅物容易獲得較純的產物,這是因為醋酸根離子具有螯合的作用,有助於金屬離子的結合並促進反應的進行。
    透過液相化學合成以及後續的旋轉塗佈分別製備Sn1-xGexS和Sn1-xSbxS薄膜。Ge和Sb在SnS中的取代溶解度分別為約6和5 at%。 Sn1-xGexS和Sn1-xSbxS薄膜的可調控能隙分別在1.25-1.35eV 和1.30-1.39 eV的範圍內。本研究並探討了Sn1-xGexS和Sn1-xSbxS薄膜可調控能隙的可能機制。對於在N2中在200-350 ℃進行退火的Sn1-xGexS和Sn1-xSbxS薄膜,200 ℃退火的膜的能隙保持不變,而300℃和350℃退火的膜的能隙隨著退火溫度上升而下降,其原因分別為Ge和Sb的損失。
    在液相化學合成系統中在反應溫度230-275 ℃反應5-36小時合成的Sn1-xSbxSe (0≤x≤0.6)奈米晶體,並探討形態的轉變和能隙變化。Sn2+對Se2-具有比Sb3+更強的反應性。SnSe(1)相(JCPDS 01-075-6133)在Sn1-xSbxSe (0≤x≤0.2)奈米晶體中生長,而SnSe(2)相(JCPDS 32-1382)在Sn1-xSbxSe (0.3≤x≤0.6)奈米晶體中生長。在本研究中,Sb在SnSe晶格中的置換溶解度約為10 at%。在Sn1-xSbxSe (0.3≤x≤0.6)奈米晶體中摻雜更多的Sb在其中引起更多的缺陷,從而導致從SnSe(1)到SnSe(2)的相變。 SnSe奈米晶體作為奈米片生長,而Sb的引入增強了Sn1-xSbxSe奈米棒的生長。通過將Sb濃度(x)從0增加到0.2,Sn1-xSbxSe (0≤x≤0.2)奈米晶體的直接和間接能隙可以分別從1.39至1.53 eV和0.93至1.28 eV進行調節。Sn1-xSbxSe奈米晶體的可調變形態和能隙使其成為有潛力的光伏材料。
    CuInS2(CIS)奈米線的部分,以放電紡絲法製備CIS前驅物高分子奈米纖維,結合水熱法以高分子奈米纖維作為高分子型離子釋放源(polymer-type ion release source, PIRS),在高壓釜中合成CIS奈米線。過去尚未有過結合兩種方法製備CIS奈米線的相關報告,本研究探討高分子濃度對於前驅物奈米纖維形貌及均勻度的影響,以及探討PIRS在水熱法中運作的反應機制,在水熱法中維持穩定且低離子濃度,使產物具有較高的方向選擇性。

    The effects of hydrazine on the synthesis of Cu2ZnSnSe4 (CZTSe) and Cu2CdSnSe4 (CCTSe) nanocrystals in an autoclave as a function of temperature and time were explored. On heating at 190 °C for 24-72 h, pure CZTSe and CCTSe nanocrystals could readily grow in the hydrazine-added solution, while in the hydrazine-free solution the intermediate phases such as ZnSe, Cu2Se, and Cu2SnSe3, and Cu2SnSe3 and CdSe associated with the CZTSe and CCTSe nanocrystals grew, respectively. This result reveals that hydrazine can speed up the synthesis of pure CZTSe and CCTSe nanocrystals via a solvothermal process. The mechanisms for the hydrazine-enhanced growth of CZTSe and CCTSe nanocrystals were discussed. The pure CZTSe and CCTSe nanocrystals were subsequently fabricated to the smooth films by spin coating without further annealing in the selenium atmosphere. This processing may be beneficial to the fabrication of the absorber layer for solar cells and thermoelectric devices. In addition, the effects of different Zn precursors on the synthesis of pure and stoichiometric CZTSe nanocrystals via a facile solvothermal process were explored. The products were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and UV-vis spectroscopy. The present study showed that with the Zn(CH3COO)2 precursor pure and stoichiometric CZTSe nanocrystals were readily synthesized, while with the ZnCl2 precursor the synthesized nanocrystals were Zn-deficient and composed of CZTSe and Cu2SnSe3 phases. This result can be attributed to the chelating effect of the acetate anion in the solvothermal reaction.
    Ge- and Sb-doped SnS films with single orthorhombic SnS phase were fabricated via solvothermal routes and subsequent spin-coating, respectively. The substitution solubilities of Ge and Sb in SnS are about 6 and 5 at.%, respectively. The bandgaps of Sn1-xGexS and Sn1-xSbxS films can be tuned in the ranges of 1.25-1.35 and 1.30-1.39 eV, respectively. The possible mechanisms for the tunable bandgaps of Sn1-xGexS and Sn1-xSbxS films are discussed. For the Sn1-xGexS and Sn1-xSbxS films subjected to annealing at 200-350 °C in N2, the bandgaps of 200 °C-annealed films remain unchanged, while those of 300 °C- and 350 °C-annealed films decrease with the annealing temperature because of the evaporation of Ge and Sb respectively.
    The phase formation, morphology evolution and bandgap of Sn1−xSbxSe (0 ≤ x ≤ 0.6) nanocrystals synthesized at 230–275 °C for 5–36 h in a one-pot system were studied. Sn2+ is kinetically more reactive than Sb3+ toward Se2−. The SnSe(1) phase (JCPDS 01-075-6133) grew in the Sn1−xSbxSe (0 ≤ x ≤ 0.2) nanocrystals, while the SnSe(2) phase (JCPDS 32-1382) was dominant in the Sn1−xSbxSe (0.3 ≤ x ≤ 0.6) nanocrystals. In the present study, the substitution solubility of Sb in the SnSe lattice is about 10 at%. The introduction of more Sb in the Sn1−xSbxSe (0.3 ≤ x ≤ 0.6) nanocrystals induced more defects therein and thus caused the phase transformation from SnSe(1) to SnSe(2). The SnSe nanocrystals grew as nanosheets, while the introduction of Sb enhanced the growth of Sn1−xSbxSe nanorods. The direct and indirect bandgaps of the Sn1−xSbxSe (0 ≤ x ≤ 0.2) nanocrystals could be tuned from 1.39 to 1.53 eV and 0.93 to 1.28 eV, respectively, by increasing the Sb concentration (x) from 0 to 0.2. The tunable morphology and bandgap of the Sn1−xSbxSe nanocrystals make them potential candidates as photovoltaic materials.
    Chalcopyrite copper indium sulfide (CuInS2, CIS) has a bandgap that is optimal for a solar energy conversion material. The CIS nanowires were synthesized in a hydrothermal system by using a polymer-type ion release source to control the precursor concentration. The results indicate that the reaction process is based on the formation of CuS binary compound, which is then followed by indium intercalation, finally forming the CIS chalcopyrite crystal structure. The products were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The CIS nanowires were 100–300 nm in diameter and 2–5 μm in length.

    中文摘要 I Extended Abstract IV 誌謝 XVIII 目錄 XX 表目錄 XXV 圖目錄 XXVI 第一章 引言 1 1.1 研究動機與目的 2 第二章 文獻回顧 6 2.1 太陽能電池原理[33] 6 2.1.1 光伏效應(Photovoltaic effect) 6 2.1.2 P-N接面(P-N Junction)[34] 7 2.1.3 光傳導效應 (Photoconductive Effec) 8 2.2 太陽能電池分類[35][36] 8 2.3可調控能隙 12 2.4 CuInS2文獻回顧 15 2.4.1 CuInS2奈米棒(CIS-nanorod) 16 2.4.2 CuInS2奈米線(CIS-nanowire) 17 2.4.3 CuInS2奈米管(CIS-nanotbe) 17 2.5 Cu2ZnSnSe4文獻回顧 18 2.5.1 固相燒結法[80, 81] 19 2.5.2 共蒸鍍法[82, 83] 21 2.5.3 熱注入法[13] 22 2.5.4 濺鍍法[86, 87] 22 2.5.5 濕式化學法[14] 23 2.5.6 溶熱法[15] 24 2.6 Cu2CdSnSe4文獻回顧 25 2.6.1 固態燒結法[15, 88] 25 2.6.2 熱注入法[89, 90] 26 2.7 SnS合成與調控能隙文獻回顧 27 2.7.1 利用量子侷限效應控制SnS系列光學能隙 27 2.7.2 利用摻雜不同元素控制SnS系列光學能隙 28 2.8 SnSe合成與調控能隙文獻回顧 30 第三章 實驗步驟與方法 33 3.1 以放電紡絲法製備CuInS2前驅物,再利用高壓釜合成CuInS2奈米線 33 3.1.1 CuInS2/PVB前驅物溶液製備 33 3.1.2 利用放電紡絲法製備CuInS2前驅物奈米線 34 3.1.3 利用水熱法將CIS前驅物纖維製備CIS奈米線 34 3.2 以溶熱法在高壓釜中合成Cu2ZnSnSe4、Cu2CdSnSe4、Sn1-xSbxS粉末 35 3.2.1 合成Cu2ZnSnSe4粉末 35 3.2.2 合成Cu2CdSnSe4粉末 36 3.2.3 合成SnS與Sn1-xSbxS粉末 36 3.3 以濕式化學法於迴流系統中合成Cu2ZnSnSe4、Cu2CdSnSe4、Sn1-xGexS、Sn1-xSbxSe粉末 37 3.3.1 合成Cu2ZnSnSe4粉末 37 3.3.2 合成Cu2CdSnSe4粉末 38 3.3.3 合成Sn1-xGexS粉末 38 3.3.4 合成SnSe與Sn1-xSbxSe粉末 39 3.4 儀器分析及原理 40 3.4.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 40 3.4.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 41 3.4.3 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer, EDS) 43 3.4.5 X光繞射儀(X-ray Diffractometer) 44 3.4.6 紫外/可見光(UV-vis)光譜儀 45 3.4.7 拉曼光譜儀(Raman Spectrometer) 46 3.4.8 化學分析電子光譜儀 (Electron Spectroscopy for Chemical Analysis,ESCA) 48 第四章 結果與討論 50 4.1 以放電紡絲法製備CuInS2前驅物 50 4.1.1 在放電紡絲法中高分子濃度對CIS前驅物的影響 50 4.1.2 結論 51 4.2 利用水熱法將CIS前驅物纖維製備CIS奈米線 51 4.2.1 水熱法溫度對製備CIS奈米線的影響 52 4.2.2結論 54 4.3 溶熱法在高壓釜中合成CZTSe奈米晶 54 4.3.1 聯胺(hydrazine)對在高壓釜中合成CZTSe奈米晶的影響 54 4.3.2 使用聯胺在高壓釜中合成CZTSe奈米晶的組成微結構及光學分析 57 4.3.3 結論 58 4.4 溶熱法在高壓釜中合成CCTSe奈米晶 59 4.4.1 聯胺(hydrazine)對在高壓釜中合成CCTSe奈米晶的影響 59 4.4.2 溶熱法在高壓釜中合成CCTSe奈米晶之微結構分析及化學組成 60 4.4.3 溶熱法在高壓釜中合成CCTSe奈米晶之光學性質分析 61 4.4.4 結論 61 4.5 以濕式化學法在迴流系統中合成CZTSe (Cu2ZnSnSe4)奈米晶 62 4.5.1 以濕式化學法在迴流系統中使用不同的Zn前驅物對合成CZTSe奈米晶組成的影響 62 4.5.2 以濕式化學法在迴流系統中使用不同的Zn前驅物對合成CZTSe光學性質的影響 65 4.5.3以醋酸鋅為前驅物在迴流系統中不同配比、反應溫度及反應時間合成CZTSe奈米晶組成的影響 66 4.5.4 結論 66 4.6 以濕式化學法在迴流系統中合成CCTSe (Cu2CdSnSe4)奈米晶 67 4.6.1 以濕式化學法在迴流系統中製備Cu2CdSnSe4奈米晶 67 4.6.2 以濕式化學法在迴流系統中合成CCTSe奈米晶之微結構分析 68 4.6.3 以濕式化學法在迴流系統中合成CCTSe奈米晶之光學性值分析 69 4.6.4 結論 69 4.7 溶熱法在高壓釜中合成Sb摻雜SnS奈米晶以及濕式化學法在迴流系統中合成Ge摻雜SnS奈米晶 70 4.7.1 以濕式化學法在迴流系統中合成SnS以及Ge摻雜的SnS奈米晶 70 4.7.2 Sn0.8GexS奈米晶的微結構及光學性質分析 72 4.7.3 退火對Sn0.8Ge0.8S薄膜形貌及光學性質的影響 74 4.7.4 溶熱法在高壓釜中合成Sb摻雜的SnS薄膜 74 4.7.5 Sn1-xSbxS薄膜的光學性質分析 75 4.7.6 退火對SnS(4.7%Sb)薄膜形貌、化學組成以及能隙的影響 76 4.7.7 結論 76 4.8 以濕式化學法在迴流系統中合成Sb摻雜SnSe奈米晶 77 4.8.1 Sb摻雜對SnSe奈米晶的晶相及結構的影響 77 4.8.2 Sn1-xSbxSe奈米晶的微結構分析 80 4.8.3 Sn1-xSbxSe奈米晶的光學性質分析 80 4.8.4 結論 81 第五章 結論 82 第六章 未來展望 85 參考文獻 87 附錄 184 JCPDS 01-070-8930 (Cu2ZnSnSe4) 184 JCPDS 00-037-1463 (ZnSe) 185 JCPDS 01-086-1239 (CuSe) 186 JCPDS 01-072-8034 (Cu2SnSe3) 187 JCPDS 01-072-7165 (Cu2Se) 189 JCPDS 00-006-0362 (Se) 190 JCPDS 00-048-1224 (SnSe) 191 JCPDS 01-070-8931 (Cu2CdSnSe4) 192 JCPDS 01-072-7165 (Cu2SnSe4) 193 JCPDS 00-019-0191(CdSe) 194 JCPDS 00-039-0354 (Orthorhombic SnS) 195 JCPDS 01-077-3356 (Cubic SnS) 196 個人著作 197

    [1] 賴麗蓉, "京都議定書之分析及未來發展勢", 能源季刊, 28, 1-16 (1998).
    [2] 經濟部能源局網站2011年02月能源報導1-12.
    [3] B. Li, L. D. Wang, B. N. Kang, P. Wang and Y. Qiu, "Review of recent progress in solid-state dye-sensitized solar cells", Solar Energy Materials and Solar Cells, 90, 549-573 (2006).
    [4] 莊浩宇, 陳東煌, "取之不盡的太陽能-光電化學反應", 科學發展, 437, 58-63 (2009).
    [5] 林明憲, "太陽電池入門技術", 臺北: 全華圖書股份有限公司 (2007).
    [6] J. J. He, W. H. Zhou, J. Guo, M. Li, S. X. Wu, "Inorganic ligand mediated synthesis of CuInS2 nanocrystals with tunable properties", CrystEngComm, 14, 3638-3644 (2012).
    [7] L. Shi, P. Yin, L. Wang, Y. Qian, "Fabrication of single-crystalline CuInS2 nanowires array via a diethylenetriamine-thermal route", CrystEngComm, 14, 7217-7221 (2012).
    [8] R. Kumar, H. Münstedt, "Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release", Polymer international, 54, 1180-1186 (2005).
    [9] J. Liu, R. H. Hurt, "Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids", Environmental science & technology, 44, 2169–2175 (2010).
    [10] R. Stepanyan, A.V. Subbotin, L. Cuperus, P. Boonen, M. Dorschu, F. Oosterlinck, M. J. H. Bulters, "Nanofiber diameter in electrospinning of polymer solutions: Model and experiment", Polymer, 97, 428-439 (2016).
    [11] Y. Ertas, T. Uyar, "Main-chain polybenzoxazine nanofibers via electrospinning", Polymer, 55, 556-564 (2014).
    [12] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal "Inks" for Printable Photovoltaics", Journal of the American Chemical Society, 130, 16770–16777 (2008).
    [13] H. Wei, W. Guo, Y. Sun, Z. Yang, Y. Zhang, " Hot-injection synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals", Materials Letters, 64, 1424–1426 (2010).
    [14] H. Goldsmid, J. Sharp, "Estimation of the thermal band gap of a semiconductor from Seebeck measurements", Journal of electronic materials, 280, 869-872 (1999).
    [15] M. L. Liu, I. W. Chen, F. Q. Huang and L. D. Chen, "Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4", Advanced Materials, 21, 3808–3812 (2009).
    [16] Y. F. Du, W. H. Zhou, Y. L. Zhou, P. W. Li, J. Q. Fan, J. J. He, S. X. Wu, " Solvothermal synthesis and characterization of quaternary Cu2ZnSnSe4 particles", Materials Science in Semiconductor Processing, 15, 214-217 (2012).
    [17] L. Shi, Q. Li, "Thickness tunable Cu2ZnSnSe4 nanosheets", CrystEngComm, 13, 6507–6510 (2011).
    [18] W. Liu, M. Wu, L. Yan, R. Zhou, S. Si, S. Zhang, Q. Zhang, " Noninjection synthesis and characterization of Cu2ZnSnSe4 nanocrystals in triethanolamine reaction media", Materials Letters, 65, 2554–2557 (2011).
    [19] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, " Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: experimental and first-principles calculations", CrystEngComm, 13, 2222–2226 (2011).
    [20] S. Doeuff, M. Henry, C. Sanchez and J. Livage, "Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid", Journal of Non-crystalline solids, 89, 206-216 (1987).
    [21] Y. F. Liu, J. H. Zeng, W. X. Zhang, W. C. Yu, Y. T. Qian, J. B. Cao, W. Q. Zhang, " Solvothermal route to Bi3Se4 nanorods at low temperature ", Journal of Materials Research, 16, 3361-3365 (2001).
    [22] Q. Peng, Y. Dong, Z. Deng, H. Kou, S. Gao, Y. Li, Journal of Physical Chemistry B, 106, 9261-9265 (2002).
    [23] Y. Liu, J. Zeng, C. Li, J. Cao, Y. Wang, Y. Qian, "Formation of semiconductor Cu2-xSe rod-like crystals through a solvothermal reaction ", Materials Research Bulletin, 37, 2509-2516 (2002).
    [24] J. Ota, S. K. Srivastava, "Synthesis and optical properties of Sb2Se3 nanorods", Optical Materials, 32, 1488-1492 (2010).
    [25] K. Matsumoto, H. Uemura, M. Kawano, "A Novel Diruthenium(II,III) Complex, [{Ru(AN)(TMP)2}2(μ-S2)(μ-NH2NH2)2](CF3SO3)3·Et2O, with Two Hydrazine Bridges (AN = acetonitrile, TMP = P(OMe)3)", Chemistry Letters, 7, 1215-1218 (1994).
    [26] N. Koteswara Reddy, and K.T. Ramakrishna Reddy, "Growth of polycrystalline SnS films by spray pyrolysis", Thin solid films, 325, 4-6 (1998).
    [27] S. Coe-Sullivan, W. K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices", Organic Electronics, 4, 123-130 (2003)
    [28] J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, and S. K. Tripathi, "Preperation and Characterization of SnSe nanocrystalline thin films", Journal of Optoelectronics and Advanced Materials, 7, 2085–2094 (2005).
    [29] C. H. Hu, M. H. Chiang, M. S. Hsieh, W. T. Lin, Y. S. Fub, and T. F. Guoc, "Phase formation, morphology evolution and tunable bandgap of Sn1−xSbxSe nanocrystals", CrystEngComm, 16, 1786-1792 (2014).
    [30] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, et al., "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics", Journal of American Chemical Society, 130, 16770-16777 (2008).
    [31] W. N. Shafarman, R. Klenk, and B. E. McCandless, "Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap", Journal of Applied Physics, 79, 7324-7328 (1996).
    [32] J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, "Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles", Chemistry of Materials, 20, 6906-6910 (2008).
    [33] G. Michael, Photoelectrochemical cells, Nature, 414, 338-344 (2001).
    [34] 蔡進譯, "超高效率太陽電池-從愛因斯坦的光電效應談起", 物理雙月刊, 27, 701-719 (2005).
    [35] M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion: Springer (2003).
    [36] 顧鴻濤, "太陽能電池元件導論-材料、元件、製程、系統", 臺北: 全威圖書有限公司 (2008).
    [37] 楊德仁, "太陽能電池材料 Solar Cell Materials", 臺北: 五南圖書出版股份有限公司 (2008).
    [38] S. K. Deb, "Recent developments in high efficiency photovoltaic cells", Renewable energy, 15, 467-472 (1998).
    [39] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, D. S. Albin, A. Duda, T. A. Gessert, S. Asher, D. H. Levi and P. Sheldon, "17th European Photovoltaic Solar Energy Conference", 2, 995-1000 (2002).
    [40] P. V. Meyers, S.P. Albright, " Technical and economic opportunities for CdTe PV at the turn of the millennium", Progress in Photovoltaics: Research and Applications, 8, 161-169 (2000).
    [41] B. Dimmler, M. Powalla, W. H. Schock, " CIS-based thin-film photovoltaic modules: Potential and prospects", Progress in Photovoltaics : Research and Applications, 10, 149-157 (2002).
    [42] H. Heriche, Z. Rouabah, S. Benabbas, "Cu(In,Ga)Se2 solar cells, numerical simulation and analysis", African Journal of Science, Technology, Innovation and Development, 8, 327-330 (2016).
    [43] Y. Zhao, J. D. Wu, N. Xu, "Structures, optical absorption and electrical properties of pulsed-laser-deposited CuIn0.8Ga0.2Se2 thin films and their use in CIGS/PCBM photovoltaic structures", Materials Research Express, 3, 106402 (2016).
    [44] B. Oregan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films", Nature, 353, 737-740 (1991).
    [45] S. Chaberek, R. J. Allen, G. Goldberg, "Dye-Sensitized photopolymerization processes .3. photoreducing activity of some dicarbonyl compounds", Journal of Physical Chemistry, 69, 2834-2841 (1965).
    [46] A. Martí, G. L. Araújo, " Limiting efficiencies for photovoltaic energy conversion in multigap systems", Solar Energy Materials and Solar Cells, 43, 203-222 (1996).
    [47] R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. Levy-Clement, "Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell", Comptes Rendus Chimie, 9, 717-729 (2006).
    [48] S. Y. Chen, X. G. Gong, A. Walsh, and S. H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights", Applied Physics Letters, 94, 041903 (2009).
    [49] A. Devos, "Detailed balance limit of the efficiency of tandem solar-cells", Journal of Physics D: Applied Physics, 13, 839-846 (1980).
    [50] J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, and S. K. Tripathi, "Preparation and Characterization of SnSe nanocrystalline thin films", Journal of Optoelectronics and Advanced Materials, 7, 2085–2094 (2005).
    [51] X. Yu, R. J. Zhang, Z. J. Xu, D. X. Zhang, H. B. Zhao, Y. X. Zheng, and L. Y. Chen, "Optical constants and band gap expansion of size controlled silicon nanocrystals embedded in SiO2 matrix", Journal of Non-Crystalline Solids, 357, 3524–3527 (2011).
    [52] S. Coe-Sullivan, W. K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices", Organic Electronics, 4, 123-130 (2003).
    [53] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%", Progress in Photovoltaics: Research and Applications, 19, 894-897 (2010).
    [54] W. N. Shafarman, R. Klenk, B. E. McCandless, "Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap", Journal of Applied Physics, 79, 7324-7328 (1996).
    [55] J. Tang, S. Hinds, S. O. Kelley and E. H. Sargent, "Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles", Chemistry of Materials, 20, 6906-6910 (2008).
    [56] D. C. Pan, X. L. Wang, Z. H. Zhou, W. Chen, C. L. Xu, Y. F. Lu, " Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps", Chemistry of Materials, 21, 2489-2493 (2009).
    [57] W. Ma, J. M. Luther, H. M. Zheng, Y. Wu, A. P. Alivisatos, "Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals", Nano Letters, 9, 1699-1703 (2009).
    [58] C. H. Hu, M. H. Chiang, M. S. Hsieh, W. T. Lin, Y. S. Fub, and T. F. Guoc, "Phase formation, morphology evolution and tunable bandgap of Sn1−xSbxSe nanocrystals", CrystEngComm, 16, 1786-1792 (2014).
    [59] J. Klaer, J. Bruns, R. Henninger, K. Seimer, R. Klenk, K. Ellmer, D. Braunig, " Efficient CuInS2 thin-film solar cells prepared by a sequential process", Semiconductor Science and Technology, 13, 1456-1458 (1998).
    [60] W. J. Tsai, C. H. Tsai, C. H. Chang, J. M. Ting and R. R. Wang, " Addition of Na into CuInS2 thin film via co-evaporation", Thin Solid Films, 519, 1712-1716 (2010).
    [61] L. L. Kazmerski, G. A. Samborn, " CuInS2 thin‐film homojunction solar cells", Journal of Applied Physics, 48, 3178-3180 (1977).
    [62] S. P. Grindle, C. W. Smith, S. D. Mittleman, " Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu‐In films to an H2S atmosphere", Applied Physics Letters, 35, 24-26 (1979).
    [63] M. B. Rabeh, M. Zribi, M. Kanzari, B. Rezig, "Structural and optical characterization of Sn incorporation in CuInS2 thin films grown by vacuum evaporation method", Materials Letters, 59, 3164 -3168 (2005).
    [64] H. Metzner, T. Hahn, J. H. Bremar, J. Conrad, "Epitaxial growth of CuInS2 on sulphur terminated Si(111)", Applied Physics Letters, 69,1900-1902 (1996).
    [65] Y. Yamamoto, Y. Yamaguchi, Y. Denizu, T. Tanaka, A. Yoshida, "Fabrication and characterization of CuIn(SxSe1-x)(2) thin films deposited by rf sputtering", Thin Solid Films, 282, 372-374 (1996).
    [66] Y .D. Tembhurkar, "n-CuInS2/polysulfide photoelectrochemical solar cells prepared by spray pyrolysis", Bulletin of Materials Science, 20, 1011-1014 (1997).
    [67] R. Nomura, Y. Sekl, H. Matsuda, " Preparation of CuInS2 thin films by single-source MOCVD process using Bu2In(SPr)Cu(S2CNPri2)", Journal of Materials Chemistry, 2, 765-766 (1992).
    [68] S. Sugan, K. Baskar, R. Dhanasekaran, "Hydrothermal synthesis of chalcopyrite CuInS2, CuInSe2 and CuInTe2 nanocubes and their characterization", Current Applied Physics, 14, 1416-1420 (2014).
    [69] N. Chumha, T. Thongtem, S. Thongtem, D. Tantraviwat, S. Kittiwachana, S. Kaowphong, "A single-step method for synthesis of CuInS2 nanostructures using cyclic microwave irradiation", Ceramics International 42, 15643-15649 (2016).
    [70] M. Benchikhia, R. El Ouatiba, L. Er-Rakhoa, B. Durandb, "Synthesis and characterization of CuInS2 nanocrystals prepared by solvothermal/molten salt method", Ceramics International, 42, 11303-11308 (2016).
    [71] L. Shi, C. Peib, Q. Li, "Fabrication of ordered single-crystalline CuInSe2 nanowire arrays", CrystEngComm, 12, 3882-3885 (2010).
    [72] W. Yang, Y. Oh, J. Kim, H. Kim, H. Shin and J. Moon, "Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer", ACS Applied Materials & Interfaces, 8, 425-431 (2016).
    [73] M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, "Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance", Applied Catalysis B: Environmental, 203, 715–724 (2017).
    [74] J. J. Wu, W. T. Jiang and W. P. Liao, "CuInS2 nanotube array on indium tin oxide: synthesis and photoelectrochemical properties", Chemical Communications, 46, 5885–5887 (2010).
    [75] P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, V. S. Raja, " Investigations on co-evaporated Cu2SnSe3 and Cu2SnSe3–ZnSe thin films", Applied Surface Science, 257, 8529–8534 (2011).
    [76] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, "Development of CZTS-based thin film solar cells", Thin Solid Films, 517, 2455-2460 (2009).
    [77] C. Persson, "Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4", Journal of Applied Physics, 107, 053710-1–053710-8 (2010).
    [78] S. Nakamura, T. Maed, and T. Wada, "Phase Stability and Electronic Structure of In-Free Photovoltaic Materials: Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4", Japanese Journal of Applied Physics, 49, 121203-1–121203-6 (2010).
    [79] S. Chen, X. G. Gong, A. Walsh and S. H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights", Applied Physics Letters, 94, 041903-1–041903-3, (2009).
    [80] R. A. Wibowo1, W. H. Jung, M. H. Al-Faruqi, I. Amal, K. H. Kim, "Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders", Materials Chemistry and Physics, 124, 1006–1010 (2010).
    [81] R. A. Wibowo, W. H. Jung, K. H. Kim, "Synthesis of Cu2ZnSnSe4 compound powders bysolid state reaction using elemental powders", Journal of Physics and Chemistry of Solids, 71, 1702–1706 (2010).
    [82] G. S. Babu, Y. B. K. Kumar, P. U. Bhaskar, S. R. Vanjari, " Effect of Cu/(Zn plus Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films", Solar Energy Materials and Solar Cells, 94, 221-226 (2010).
    [83] A. Redinger, K. Hönes, X. Fontané, V. I. Roca, E. Saucedo, N. Valle, A. P. Rodríguez and S. Siebentritt, "Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films", Applied Physics Letters, 98, 101907-1–101907-3 (2011).
    [84] G. S. Babu, Y. B. K. Kumar, P. U. Bhaskar, V. S Raja, "Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer", Semiconductor Science and Technology, 23, 085023 (2008).
    [85] G. S. Babu, Y. B. K. Kumar, P. U. Bhaskar, V. S Raja, "Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications", Journal of Physics D: Applied Physics, 41, 205305 (2008).
    [86] P. M. P. Salomé, P. A. Fernandes, A. F. da Cunha, "Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers", Thin Solid Films, 517, 2531–2534 (2009).
    [87] P. M. P. Salomé, P. A. Fernandes, A. F. da Cunha, J. P. Leitão, J. Malaquias, A. Weber, J. C. González, M. I. N. DaSilva, "Growth pressure dependence of Cu2ZnSnSe4 properties", Solar Energy Materials & Solar Cells, 94, 2176–2180 (2010).
    [88] R. Chetty, A. Bali, R. C. Mallik, " Thermoelectric properties of indium doped Cu2CdSnSe4", Intermetallics, 72, 17-24 (2016).
    [89] M. Ibáñez, D. Cadavid, R. Zamani, N. García-Castelló, V. Izquierdo-Roca, W. Li, A. Fairbrother, J. D. Prades, A. Shavel, J. Arbiol, A. Pérez-Rodríguez, J. R. Morante and A. Cabot, "Composition Control and Thermoelectric Properties of Quaternary Chalcogenide Nanocrystals: The Case of Stannite Cu2CdSnSe4", Chemistry of Materials, 24, 562−570 (2012).
    [90] F. J. Fan, B. Yu, Y. X. Wang, Y. L. Zhu, X. J. Liu, S. H. Yu and Z. Ren, " Colloidal Synthesis of Cu2CdSnSe4 Nanocrystals and Hot-Pressing to Enhance the Thermoelectric Figure-of-Merit", Journal of the American Chemical Society, 133, 15910–15913 (2011).
    [91] N. Koteswara Reddy, K. T. Ramakrishna Reddy, "Growth of polycrystalline SnS films by spray pyrolysis", Thin solid films, 325, 4-6 (1998).
    [92] Y. Xu, N. Al-Salim, C. W. Bumby, and R. D. Tilley, "Synthesis of SnS Quantum Dots", Journal of the American Chemical Society, 131, 15990-15991 (2009).
    [93] Z. Deng, D. Han, and Y. Liu, "Colloidal synthesis of metastable zinc-blende IV–VI SnS nanocrystals with tunable sizes", Nanoscale, 3, 4346-4351 (2011).
    [94] Y. Yongli1, C. Shuying, and L. Songlin, "Effect of Ag doping on structural, optical and electrical properties of SnS:Ag thin films prepared by pulse electroposition", Advanced Materials Research, 60-61, 105-109 (2009).
    [95] A. Akkari, M. Reghima, C. Guasch, and N. Kamoun-Turki, "Effect of copper doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition", Journal of Materials Science, 47, 1365-1371 (2012).
    [96] A. Gowri Manohari, S. Dhanapandian, C. Manoharan, K. Santhosh Kumar, and T. Mahalingam, "Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis", Materials Science in Semiconductor Processing, 17, 138–142 (2014).
    [97] H. Y. He, J. Fei, and J. Lu, "Optical and electrical properties of pure and Sn4+-doped n-SnS films deposited by chemical bath deposition", Materials Science in Semiconductor Processing, 24, 99-95 (2014).
    [98] Z. Zainal, S. Nagalingam, A. Kassim, M. Z. Hussein, W. M. M. Yunus, "Effects of annealing on the properties of SnSe films", Solar Energy Materials and Solar Cells, 81, 261-268 (2004).
    [99] M. Popescu, F. Sava, A. Lorinczi, G. Socol, I. N. Mihailescu, A. Tomescu, C. Simion, "Structure, properties and gas sensing effect of SnSe(2) films prepared by pulsed laser deposition method", Journal of Non-Crystalline Solids, 353, 1865-1869 (2007).
    [100] I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, J. C. Jumas, "Electronic structure of tin monochalcogenides from SnO to SnTe", Physical Review B, 58, 1896-1906 (1998).
    [101] A. Erdemir, "Crystal Chemistry and Solid Lubricating Properties of the Monochalcogenides Gallium Selenide and Tin Selenide", Tribology Transactions, 37, 471-178 (1994).
    [102] N. Yellin, L. Bendor, "Low temperature synthesis of binary chalcogenides", Materials Research Bulletin, 18, 823-827 (1983).
    [103] W. Z. Wang, Y. Geng, Y. T. Qian, C. Wang, X. M. Liu, "A convenient, low temperature route to nanocrystalline SnSe", Materials Research Bulletin, 34, 403-406 (1999).
    [104] J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, S. K. Tripathi, "Preparation and characterization of snse nanocrystalline thin films", Journal of Optoelectronics and Advanced Materials, 7, 2085-2094 (2005).
    [105] M. A. Franzman, C. W. Schlenker, M. E. Thompson, R. L. Brutchey, "Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells", Journal of American Chemical Society, 132, 4060-4061 (2010).
    [106] W. J. Baumgardner, J. J. Choi, Y. F. Lim, T. Hanrath, "SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry", Journal of American Chemical Society, 132, 9519-9521 (2010).
    [107] J. J. Buckley, F. A. Rabuffetti, H. L. Hinton, and R. L. Brutchey, "Synthesis and Characterization of Ternary SnxGe1-xSe Nanocrystals," Chemistry of Materials, 24, 3514-3516 (2012).
    [108]
    [109] C. V. Raman, "A change of wave-length in light scattering", Nature, 121, 619 (1928).
    [110] A. Myers Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution", The Journal of Physical Chemistry A, 1120, 11975-11991 (2008).
    [111] Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie, Y. Qian, "Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E = S, Se) nanorods", Inorganic chemistry, 39, 2964-2965 (2000).
    [112] Q. Lu, J. Hu, K. Tang, Y. Qian, G. Zhou, X. Liu, "Synthesis of nanocrystalline CuMS2 (M = In or Ga) through a solvothermal process", Inorganic chemistry, 39, 1606-1607 (2000).
    [113] J. Xiao, Y. Xie, R. Tang, Y. Qian, "Synthesis and characterization of ternary CuInS2 nanorods via a hydrothermal route", Journal of Solid State Chemistry, 161, 179-183 (2001).
    [114] J. Zhou, S. Li, X. Gong, Y. Yang, Y. Guo, "Preparation of CuInS2 microspheres via a facile solution-chemical method", Materials Letters, 65, 2001-2003 (2011).
    [115] J. Xiao, Y. Xie, R. Tang, Y. Qian, "Synthesis and characterization of ternary CuInS2 nanorods via a hydrothermal route", Journal of Solid State Chemistry, 161, 179-183 (2011).
    [116] P. M. P. Salomé, P. A. Fernandes, A. F. da Cunha, " Morphological and structural characterization of Cu2ZnSnSe4 thin films grown by selenization of elemental precursor layers", Thin Solid Films, 517, 2531–2534 (2009).
    [117] P. M. P. Salomé, P. A. Fernandes, A. F. da Cunha, J. P. Leitão, J. Malaquias, A. Weber, J. C. González, M. I. N. DaSilva, "Growth pressure dependence of Cu2ZnSnSe4 properties", Solar Energy Materials & Solar Cells, 94, 2176–2180 (2010).
    [118] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J. H. Yun, "Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values", Applied Physics Letters, 97, 021905-1-021905-3 (2010).
    [119] M. Grossberg, J. Krustok, K. Timmo, M. Altosaar, " Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy", Thin Solid Films, 517, 2489–2492 (2009).
    [120] A. Redinger, K. Hönes, X. Fontané, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Pérez-Rodríguez and S. Siebentritt, "Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin films", Applied Physics Letters, 98, 101907-1-101907-3 (2011).
    [121] O. Volobujeva, J. Raudoja, E. Mellikov, M. Grossberg, S. Bereznev, R. Traksmaa, "Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu sequential films", Journal of Physics and Chemistry of Solids, 70, 567–570 (2009).
    [122] F. Hergert and R. Hock, "Predicted formation reactions for the solid-state syntheses of the semiconductor materials Cu2SnX3 and Cu2ZnSnX4 (X = S, Se)", Thin solid films, 515, 5953-5956 (2007).
    [123] R. A. Wibowo, W. H. Jung, M. H. Al-Faruqi, I. Amal and K. H. Kim, "Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders", Materials Chemistry and Physics, 124, 1006-1010 (2010).
    [124] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline and A. G. Schrott, "A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device", Advanced Materials, 20, 3657-3662 (2008).
    [125] D. B. Mitzi, "Solution processing of chalcogenide semiconductors via dimensional reduction", Advanced Materials, 21, 3141-3158 (2009).
    [126] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac and A. G. Schrott, "Hydrazine-based deposition route for device-quality CIGS films", Thin solid films, 517, 2158-2162 (2009).
    [127] T. K. Todorov, K. B. Reuter and D. B. Mitzi, "High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber", Advanced Materials, 22, 156-159 (2010).
    [128] E. G. Tulsky and R. Jeffrey, "Dimensional reduction: A practical formalism for manipulating solid structures", Chemistry of Materials, 13, 1149-1166 (2001).
    [129] Y. F. Du, J. Q. Fan, W. H. Zhou, Z. J. Zhou, J. Jiao, S. X. Wu, "One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells", ACS Applied Materials and Interfaces, 40, 1796-1802 (2012).
    [130] F .J. Fan, B. Yu, Y. X. Wang, Y. L. Zhu, X. J. Liu, S. H. Yu, Z. Ren, "Colloidal Synthesis of Cu2CdSnSe4 Nanocrystals and HotPressing to Enhance the Thermoelectric FigureofMerit", Journal of the American Chemical Society, 1330, 15910-15913 (2011).
    [131] H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, "Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II= Zn, Cd; III= Ga, In; IV= Ge, Sn; VI= Se)", Journal of crystal growth, 2080, 416-422 (2000).
    [132] S. A. Mkrtchyan, K. Dovletov, É. G. Zhukov, A. G. Melikdzhanyan, S. Nuryev, "Electrophysical properties of Cu2AIIBIVSe4 (AII - Cd, Hg; BIV - Ge, Sn) compounds", Inorganic Materials, 240, 932-934 (1989).
    [133] G. Marcano, C. Rincon, L. M. de Chalbaud, D. B. Bracho, G. S. Perez, "Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3", Journal of Applied Physics, 90, 1847-1853 (2001).
    [134] J. C. Vickerman and I. S. Gilmore, "Surface analysis: the principal techniques", Wiley Online Library (2009).
    [135] Z. Deng, D. Han, and Y. Liu, "Colloidal synthesis of metastable zinc-blende IV–VI SnS nanocrystals with tunable sizes", Nanoscale, 3, 4346 (2011).
    [136] J. F. Moulder, P. E. Sobol, and K. D. Bomben, "Handbook of X Ray Photoelectron Spectroscopy", Perkin-Elmer Corp (1992).
    [137] L. H. Ahrens, "The use of ionization potentials Part 1. Ionic radii of the elements ", Geochimica et Cosmochimica Acta, 2, 155-169 (1952).
    [138] R. E. Reed-Hill, R. Abbaschian, "Physical Metallurgy Principles", PWS Publishing Company, Boston (1994).
    [139] D. D. Vaughn, R. J. Patel, M. A. Hickner and R. E. Schaak, "Single-Crystal Colloidal Nanosheets of GeS and GeSe", Journal of American Chemical Society, 132, 15170-15172 (2010).
    [140] W. T. Lin, C. Y. Ho, Y. M. Wang, K. H. Wu and W. Y. Chou, "Tunable growth of (GaxIn1-x)2O3 nanowires by water vapor ", Journal of Physics and Chemistry of Solids, 73, 948-952 (2012).
    [141] V. I. Vasyltsiv, Y. I. Rym and Y. M. Zakharko, "Optical Absorption and Photoconductivity at theBand Edge of β-Ga2-xInxO3", Physica Status Solidi B-Basic Research, 195, 653-658 (1996).
    [142] A. Kudo and I. Mikami, "Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution", Journal of the Chemical Society, 94, 2929-2932 (1998).
    [143] L. Binet, G. Gauthier, C. Vigreux, and D. Gourier, "Electron magnetic resonance and optical properties of Ga2-2xIn2xO3 solid solutions", Journal of Physics and Chemistry of Solids, 60, 1755-1762 (1999).
    [144] D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, "Stress and its effects on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire", Applied Physics Letters, 83, 677-679 (2003).
    [145] T. P. Gao, M. C. S. Kumar, S. A. Angayarknni, and M. Ashok, "Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis", Journal of Alloys and Compounds, 485, 413-417 (2009).
    [146] B. C. Mohanty, Y. H. Jo, D. H. Yeon, L. J. Choi, and Y. S. Cho, "Stress-induced anomalous shift of optical band gap in ZnO: Al thin films", Applied Physics Letters, 95, 062103 (2009).
    [147] P. Sinsermsuksakul, R. Chakraborty, S. B. Kim, S. M. Heald, T. Buonassisi, R. G. Gordon, "Antimony-doped tin(II) sulfide thin films", Chemistry of Materials, 24, 4556-4562 (2012).
    [148] C. H. Hu, M. H. Chiang, M. S. Hsieh, W. T. Lin, Y. S. Fu, T. F. Guo, "Phase formation, morphology evolution and tunable bandgap of Sn1−xSbxSe nanocrystals", CrystEngComm, 16, 1786-1792 (2014).
    [149] J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liu, G. Zou, "Facile synthesis of IV–VI SnS nanocrystalswith shape and size control: nanoparticles, nanoflowers and amorphous nanosheets", Nanoscale, 2, 1699-1703 (2010).
    [150] Z. Zhu, A. Zhang, G. Ouyang, G. Yang, "Band gap tunability in semiconductor nanocrystals by strain: size and temperature effect", The Journal of Physical Chemistry C, 115, 6462-6466 (2011).
    [151] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Company, Boston, 1994.
    [152] K. M. Khanna, R. Ekai, C. K. Ronno, S. K. Rotich and P. K. Toronge, " Theory of multilayer solar cells", Indian Journal of Pure & Applied Physics, 43, 432-438 (2005).
    [153] M. A. Green1, A. Ho-Baillie and H. J. Snaith, "The emergence of perovskite solar cells", Nature Photonics, 8, 506-514 (2014).
    [154] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz and H. J. Snaith, "Lead-free organic-inorganic tin halide perovskites for photovoltaic applications", Energy & Environmental Science, 7, 3061-3068 (2014).
    [155] H. J. Snaith, "Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells", The Journal of Physical Chemistry Letters, 4, 3623-3630 (2013).
    [156] R. F. Service, "Perovskite solar cells keep on surging", Science, 344, 458 (2014).

    無法下載圖示 校內:2018-09-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE