簡易檢索 / 詳目顯示

研究生: 陳威廷
Chen, Wei-ting
論文名稱: 以天然鍵性軌域分析來研究7-雜氮(口引)(口朵)雙聚物的自由基化合物之互變反應
Studying tautomeric reactions of radical compounds of 7-azaindole dimer by Nature Bond Orbital analysis
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 130
中文關鍵詞: 自由基互變7-雜氮吲哚
外文關鍵詞: radical, tautomeric, 7-azaindole
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA鹼基對會發生特別的互變機制,可能造成基因碼的錯亂,而DNA鹼基對的radical anion/cation有可能加速這種互變機制的速度,並且使得基因碼發生變異。我們利用量子力學來研究7-azaindole (7AI) dimer質子轉移的反應機制,希望將來有助DNA鹼基對的研究。
    在本研究中,我們使用分子模擬計算的密度泛函數理論(density functional theory)[DFT/6-31+G(d)],對7-AI radical anion和cation的二部質子轉移反應機制的起始物、過渡態、中間產物和最終產物作研究。本研究也使用天然鍵性軌域(natural bond orbital,簡稱NBO)分析,針對反應物、過渡態、中間產物和產物的電子結構、E2值和電子分佈做探討。
    在7-AI dimer radical anion/cation,其單一質子轉移的中間產物single-proton-transferring(SPT form)能量是低於雙子轉移的tautomeric form。在radical anion normal form,NBO電子結構分析的結果表示,-spin 部份的氫鍵組的N-H是為sigma bonds,但是-spin的分析卻是斷裂的。換句話說,原本兩個N-H…N結構在-spin電子組態的部份被弱化掉,這導致於第一個質子轉移反應步驟的活化能不高的原因。

    The tautomerism, which takes place in DNA base pairing, might lead to confusing genetic coding. In the charged DNA pairing radicals, either radical cations or anions, the rates of tautomerism processes would increase and, consequently, changes of genetic codes become noteworthy. The proton transferring mechanism reported for the 7-azaindole (7AI) dimer have been subjected to quantum mechanic studies in order to lay the foundation for future studies in DNA pairing.
    Through molecular calculations at density functional level [DFT/6-31+G(d)], the initiator, transition state(s), intermediate and final products involved in two-step proton migration mechanism have been studied. The second-order perturbation energy, E(2), electronic structures and electronic distribution of NBO, analysis within the natural bond orbital model has also been conducted on all the above-mentioned states.
    For the 7-AI dimer radical anion/cation, the conformer obtained single-proton transferring (the SPT form) shows lower energy than the conformer obtained by two-proton transferring (the tautomeric form). At radical anion normal form, The electronic structures of NBO results indicate that both N-H sigma bonds seen by α-spin analysis are broken seen by β-spin analysis. In other words, the original two N-H…N framework is weakened by the -spin electron state. This accounts for the smaller activation energy for the first-proton transferring process.

    目錄 摘 要................................................Ⅰ Abstract..............................................Ⅱ 謝 誌................................................Ⅲ 目 錄................................................Ⅳ 表目錄................................................Ⅵ 圖目錄................................................Ⅸ 第一章 緒論........................................1 第二章 理論背景....................................2   2-1 DNA的突變.....................................2   2-2 7-雜氮吲哚雙聚物(7-Azaindole Dimer).........6   2-3 計算理論......................................8 2-3-1 HF理論方法......................................9 2-3-2 Density Functional Theory理論方法..............10 2-3-3 基底...........................................12 2-3-4 分裂(split)基底..............................13 2-3-5 極化函數(polarization function)..............14 2-3-6 擴散函數(diffuse function)...................14 2-3-7 限定自洽場與非限定自洽場.......................15 2-3-8 天然鍵結軌域(NBO)............................16 第三章 計算方法......................................20   3-1 選用軟體.....................................20 3-2 計算條件.........................................20 3-3 計算流程.........................................21 3-4 計算指令.........................................22 3-5 選用基底.........................................22 第四章 結果與討論....................................24   4-1 7-Azaindole Dimer............................24    4-1-2 反應路徑.................................24 4-1-2 7-AI Dimer的Normal Form........................27 4-1-3 7-AI Dimer的Tautomeric Form....................32   4-2 7-AI Dimer Radical Anion.....................38    4-2-1 反應路徑.................................38    4-2-2 結構與能量...............................38 4-2-3 天然鍵性軌域(NBO)分析........................45 4-2-3-1 Normal Form..................................45 4-2-3-2 Transition State 1...........................50 4-2-3-3 Single-Proton-Transferred Form(SPT form)...54 4-2-3-4 Transition State 2...........................61 4-2-3-5 Tautomeric Form..............................64   4-3 7-AI Dimer Radical Cation....................67    4-3-1 反應路徑.................................67    4-2-2 結構與能量...............................67 4-2-3 天然鍵性軌域(NBO)分析........................72 4-2-3-1 Normal Form..................................72 4-2-3-2 Transition State 1...........................76 4-2-3-3 Single-Proton-Transferred Form(SPT form)...80 4-2-3-4 Transition State 2...........................85 4-2-3-5 Tautomeric Form..............................88 第五章 結論..........................................91 參考文獻.............................................128

    [01] (a) J. D. Watson, F. H. C. Crick, Nature 1953, 171, 737-738; (b) J. D.Watson, F. H. C. Crick, Nature 1953, 171, 964-967.
    [02] (a) P. O. Löwdin, Rev. Mod. Phys. 1963, 35, 724-732; (b) P. O. Löwdin, Adv. Quantum Chem. 1965, 2, 213–361.
    [03] A. O. Colson, B. Besler, D. M. Close, M. D. Sevilla, J. Phys. Chem. 1992, 96, 661-668.
    [04] V. Hrouda, J. FloriHn, P. Hobza, J. Phys. Chem. 1993, 97, 1542-1557.
    [05] J. FloriHn, V. Hrouda, P. Hobza, J. Am. Chem. Soc. 1994, 116, 1457-1460.
    [06] J. FloriHn, J. Leszczyn′ ski, J. Am. Chem. Soc. 1996, 118, 3010-3017.
    [07] N. U. Zhanpeisov, J. Sˇponer, J. Leszczyn′ ski, J. Phys. Chem. A 1998, 102, 10374-10379.
    [08] V. Guallar, A. Douhal, M. Moreno, J. M. Lluch, J. Phys. Chem. A 1999, 103, 6251-6256.
    [09] J. Bertran, A. Oliva, L. RodrUguez-Santiago, M. Sodupe, J. Am. Chem. Soc. 1998, 120, 8159-8167.
    [10] X. Li, Z. Cai, M. D. Sevilla, J. Phys. Chem. B 2001, 105, 10115-10123.
    [11] (a) E. Nir, K. Kleinermanns, M. S. de Vries, Nature 2000, 408, 949-951; (b) E. Nir, Ch. Janzen, P. Imhof, K. Kleinermanns, M. S. de Vries, Phys. Chem. Chem. Phys. 2002, 4, 732-739.
    [12] M. Gutowski, I. Dabkowska, J. Rak, S. Xu, J. M. Nilles, D. Radisic, K. H. Bowen, Eur. Phys. J. D 2002, 20, 431-439.
    [13] (a) C. J. Burrows, J. G. Muller, Chem. Rev. 1998, 98, 1109 –1152; (b) B. Armitage, Chem. Rev. 1998, 98, 1171-1200.
    [14] D. Becker, M. D. Sevilla, Advances in Radiation Biology, Academic Press, New York, 1993, p. 121-180.
    [15] J. H. Miller, W. W. Wilson, R. H. Ritchie in Computational Approaches in Molecular Radiation Biology (Eds.: M. N. Varma, J. Chatterjee), Plenum Press, New York, 1994, pp. 65-76.
    [16] B. D. Michael, P. O’Neill, Science 2000, 287, 1603-1604.
    [17] B. BoudaQffa, P. Cloutier, D. Hunting, M. A. Huels, L. Sanche, Science 2000, 287, 1658-1660.
    [18] X. Li, M. D. Sevilla, L. Sanche, J. Am. Chem. Soc. 2003, 125, 13668-13669.
    [19] B. Liu, S. Tomita, J. Rangama, P. Hvelplund, S. B. Nielsen, ChemPhysChem 2003, 4, 1341-1344.
    [20] C. A. Taylor, M. A. El-Bayoumi, M. Kasha, Proc. Natl. Acad. Sci. USA 1969, 63, 253-260.
    [21] K. C. Ingham, M. A. El-Bayoumi, J. Am. Chem. Soc. 1974, 96, 1674-1682.
    [22] K. Fuke, K. Kaya, J. Phys. Chem. 1989, 93, 614-621.
    [23] C. F. Chapman, M. Maroncelli, J. Phys. Chem. 1992, 96, 8430-8441.
    [24] A. Douhal, S. K. Kim, A. H. Zewail, Nature 1995, 378, 260-263.
    [25] M. Chachisvilis, T. Fiebig, A. Douhal, A. H. Zewail, J. Phys. Chem. A 1998, 102, 669-673.
    [26] T. Fiebig, M. Chachisvilis, M. Manger, A. H. Zewail, A. Douhal, I. Garcia- Ochoa, A. de La Hoz Ayuso, J. Phys. Chem. A 1999, 103, 7419-7431.
    [27] (a) D. E. Folmer, L. Poth, E. S. Wisniewski, A. W. Castleman Jr., Chem. Phys. Lett. 1998, 287, 1-7; (b) D. E. Folmer, E. S. Wisniewski, S. M. Hurley, A. W. Castleman Jr., Proc. Natl. Acad. Sci. USA 1999, 96, 12980-12986.
    [28] S. Takeuchi, T. Tahara, Chem. Phys. Lett. 1997, 277, 340– 346.
    [29] S. Takeuchi, T. Tahara, J. Phys. Chem. A 1998, 102, 7740-7753.
    [30] S. Takeuchi, T. Tahara, Chem. Phys. Lett. 2001, 347, 108-114.
    [31] J. CatalHn, M. Kasha, J. Phys. Chem. A 2000, 104, 10812-10820.
    [32] J. CatalHn, J. Phys. Chem. A 2002, 106, 6738-6742.
    [33] P. T. Chou, Y. M. Cheng, W. S. Yu, S. C. Pu, J. Phys. Chem. A 2003, 107, 5640
    -5641.
    [34] A. Douhal, V. Guallar, M. Moreno, J. M. Lluch, Chem. Phys. Lett. 1996, 256, 370-376.
    [35] V. Guallar, V. S. Batista, W. H. Miller, J. Chem. Phys. 1999, 110, 9922-9936.
    [36] M. Moreno, A. Douhal, J. M. Lluch, O. CastaÇo, L. M. Frutos, J. Phys. Chem. A 2001, 105, 3887-3893.
    [37] J. CatalHn, J. C. del Valle, M. Kasha, Proc. Natl. Acad. Sci. USA 1999, 96, 8338
    -8343.
    [38] J. C. del Valle, M. Kasha, J. CatalHn, Int. J. Quantum Chem. 2000, 77, 118-127.
    [39] J. CatalHn, J. C. del Valle, M. Kasha, Chem. Phys. Lett. 2000, 318, 629-636.
    [40] Hsing-Yin Chen* and Ito Chao*[a], ChemPhysChem 2004, 5, 1855-1863.
    [41] (a) Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142-6148; (b) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.
    [42] Weeny, R. M.; Dierksen, G.; Nugent, W. A.; Harlow, R. L. J. Chem. Phys. 1968, 49, 4852-4856.
    [43] Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids (McGraw-Hill, New York, 1974).
    [44] (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871; (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138; (c) Salahub, D. R.; Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989) ; (d) Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
    [45] (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652; (b) Becke, A. D. Phys. Rev. 1988, A38, 3098-3100.
    [46] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785-789.
    [47] Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983-993
    [48] Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001, 105, 5560-5566.
    [49] (a) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206; (b) Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct.(Theochem) 2000, 507, 153-156; (c) Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. (Theochem) 2001, 543, 285-297; (d) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004-11009; (e) Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070-7073; (f) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1986, 84, 5687-5705; (g) Weinhold, F. J. Mol. Struct.(Theochem) 1997, 398, 181-197; (h) Mitzel, N. W.; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320-7327; (i) Hobza, P.; Sponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B 2000, 104, 6286-6292; (j) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49-57; (k) Wilkens, S. J.; Weatler, W. M.; Weinhold, F.; Markley; J. L. J. Am. Chem. Soc. 2002, 124, 1190-1191.
    [50] Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926.

    下載圖示 校內:2009-06-24公開
    校外:2009-06-24公開
    QR CODE