簡易檢索 / 詳目顯示

研究生: 黃士齊
Huang, Shi-Chi
論文名稱: 過量表現前胸腺素藉由調控基質金屬蛋白酵素誘發發炎性腸道疾病
Overexpression of prothymosin α induces inflammatory bowel disease through regulation of matrix metalloproteinases
指導教授: 吳昭良
Wu, Chao-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 50
中文關鍵詞: 發炎性腸道疾病克隆氏症潰瘍性結腸炎前胸腺素基質金屬蛋白酵素
外文關鍵詞: inflammatory bowel disease, IBD, ulcerative colitis, prothymosin α, matrix metalloproteinase
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發炎性腸道疾病 (inflammatory bowel disease, IBD) 是一種在小腸及結腸慢性發炎的病症,在臨床上主要分成克隆氏症 (Crohn's disease) 與潰瘍性結腸炎 (ulcerative colitis) 兩種,其因慢性發炎可能增加罹患結腸癌的風險。前胸腺素 (prothymosin α, ProT) 是個酸性核蛋白,在細胞增生、轉錄、染色質的重組及凋亡 (apoptosis) 扮演重要角色。基質金屬蛋白酵素 (matrix metalloproteinase, MMP) 是個需要鋅的蛋白脢,在細胞增生、爬行及凋亡扮演重要角色。然而在IBD中,尚未釐清MMP的表現如何被調控,因此本研究主要以釐清MMP與ProT在IBD中的關係。在臨床IBD病人的microarray中發現ProT、MMP-7與MMP-12都有過量表現,且具有高度正相關性,並於ProT同型合子的轉殖小鼠中發現MMP有過量表現的情況。在實驗中利用生物活體冷光 (Xenogen IVISR Spectrum Noninvasive Quantitative Molecular Imaging System) 及免疫組織化學染色得知在糊精硫酸鈉 (dextran sulfate sodium, DSS) 所誘導的IBD模式下,ProT、MMP-7與MMP-12都有過量表現。在ProT與MMP過量表現的小鼠中發現IBD症狀比對照組嚴重,而MMP-7與MMP-12基因剔除 (Knockout) 小鼠對DSS所誘發的IBD有較高的耐受性,因此得知ProT、MMP-7與MMP-12在IBD中具有影響力。在細胞實驗中發現ProT與MMP表現量具有正相關性,並得知ProT可以調控下游MMP的表現。總結實驗得知過量表現ProT可透過調控MMP-7與MMP-12的表現在IBD的病程中扮演重要角色。

    Inflammatory bowel disease (IBD) is a group of inflammatory condition of the colon and small intestine. The major types of IBD are Crohn's disease and ulcerative colitis. It was suggested that chronic inflammation increases the risk for colon cancer. Prothymosin α (ProT) is an acid-rich non-histone nuclear protein, which is known to play an important role in proliferation, transcription, chromatin remodeling, and apoptosis. Matrix metalloproteinases (MMPs), which are zinc-dependent endopeptidases, play a major role in cell behaviors, such as cell proliferation, migration, and apoptosis. However, the regulation of MMP expression in IBD is not clear. The aim of this study is to explore the relationship between MMPs and ProT in IBD. Analysis of microarray data revealed that ProT, MMP-7, and MMP-12 were overexpressed in IBD patients. Furthermore, there were significant positive correlations between the expression levels of ProT and MMP-7 as well as ProT and MMP-12. We observed that MMPs were overexpressed in ProT homozygous transgenic mice. Using bioluminescence reporter system and immunohistochemical analysis, we found that the expression of MMP-7, MMP-12, and ProT were upregulated in the mouse IBD model induced with dextran sulfate sodium (DSS). Moreover, mice overexpressing ProT and MMP exhibited more serious IBD than the control mice. MMP-7 and MMP-12 knockout mice were resistant to DSS-induced IBD, suggesting the role of ProT, MMP-7, and MMP-12 in the development of IBD. A positive correlation between MMP and ProT expression was observed in vitro. In conclusion, our results indicate that the excess level of ProT may play an important role in the regulation of MMP-7 and MMP-12 expression in inflammatory conditions during the IBD process.

    合格證明書………………………………………………………………… ..I 中文摘要………………………………………………………………….... .II 英文摘要………………………...………………..……………………… IV 誌謝…………………………………………………………………………VI 目錄……………………………………………….……………………… .VII 圖目錄…………………………………………………………………… .VIII 縮寫……………………………………………………………………… ... IX 緒論………………………………………………………………………... 1 研究動機…………………………………………………………………... 5 材料方法…………………………………………………………………... 6 結果………………………………………………………………………. 24 結論………………………………………………………………………. 31 討論………………………………………………………………………. 33 參考文獻…………………………………………………………………. 35 圖表………………………….…………………………………………… 40 附錄…………………………………………………………………….… 49

    Azuma, Y.T., Nishiyama, K., Matsuo, Y., Kuwamura, M., Morioka, A., Nakajima, H., and Takeuchi, T. (2010). PPARalpha contributes to colonic protection in mice with DSS-induced colitis. Int Immunopharmacol 10, 1261-1267.

    Baxevanis, C.N., Frillingos, S., Seferiadis, K., Reclos, G.J., Arsenis, P., Katsiyiannis, A., Anastasopoulos, E., Tsolas, O., and Papamichail, M. (1990).
    Enhancement of human T lymphocyte function by prothymosin alpha: increased production of interleukin-2 and expression of interleukin-2 receptors in normal human peripheral blood T lymphocytes. Immunopharmacol Immunotoxicol 12, 595-617.

    Baxevanis, C.N., Reclos, G.J., Economou, M., Arsenis, P., Katsiyiannis, A., Seferiades, K., Papadopoulos, G., Tsolas, O., and Papamichail, M. (1988). Mechanism of action of prothymosin alpha in the human autologous mixed lymphocyte response. Immunopharmacol Immunotoxicol 10, 443-461.

    Conteas, C.N., Mutchnick, M.G., Palmer, K.C., Weller, F.E., Luk, G.D.,
    Naylor, P.H., Erdos, M.R., Goldstein, A.L., Panneerselvam, C., and Horecker, B.L. (1990). Cellular levels of thymosin immunoreactive peptides are linked to proliferative events: evidence for a nuclear site of action. Proc Natl Acad Sci U S A 87, 3269-3273.

    Costello, C.M., Mah, N., Hasler, R., Rosenstiel, P., Waetzig, G.H., Hahn, A., Lu, T., Gurbuz, Y., Nikolaus, S., Albrecht, M., et al. (2005). Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med 2, e199.

    Eschenfeldt, W.H., and Berger, S.L. (1986). The human prothymosin alpha gene is polymorphic and induced upon growth stimulation: evidence using a cloned cDNA. Proc Natl Acad Sci U S A 83, 9403-9407.

    Evstafieva, A.G., Belov, G.A., Kalkum, M., Chichkova, N.V., Bogdanov, A.A., Agol, V.I., and Vartapetian, A.B. (2000). Prothymosin alpha fragmentation in apoptosis. FEBS Lett 467, 150-154.

    Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M.J., Hedrick, S.M., Tenzer, S., Neurath, M.F., et al. (2011).
    Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335-339.

    Haritos, A.A., Goodall, G.J., and Horecker, B.L. (1984). Prothymosin alpha: isolation and properties of the major immunoreactive form of thymosin alpha 1 in rat thymus. Proc Natl Acad Sci U S A 81, 1008-1011.

    Harris, A., Feller, E.R., and Shah, S.A. (2009). Medical therapy of IBD in 2009. Med Health R I 92, 78-81.

    Hayden, D.M., Forsyth, C., and Keshavarzian, A. (2011). The role of matrix metalloproteinases in intestinal epithelial wound healing during normal and inflammatory states. J Surg Res 168, 315-324.

    Jiang, X., Kim, H.E., Shu, H., Zhao, Y., Zhang, H., Kofron, J., Donnelly, J., Burns, D., Ng, S.C., Rosenberg, S., et al. (2003). Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299, 223-226.

    Kaser, A., Zeissig, S., and Blumberg, R.S. (2010). Inflammatory bowel disease. Annu Rev Immunol 28, 573-621.

    Kirkegaard, T., Hansen, A., Bruun, E., and Brynskov, J. (2004). Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn's disease. Gut 53, 701-709.

    Korzenik, J.R., and Podolsky, D.K. (2006). Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 5, 197-209.

    Lee, C.H., Wu, C.L., and Shiau, A.L. (2004). Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J Gene Med 6, 1382-1393.

    Lee, C.H., Wu, C.L., and Shiau, A.L. (2005). Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther 12, 175-184.

    Lennard-Jones, J.E. (1989). Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 170, 2-6; discussion 16-19.

    Li, K.J., Shiau, A.L., Chiou, Y.Y., Yo, Y.T., and Wu, C.L. (2005). Transgenic overexpression of prothymosin alpha induces development of polycystic kidney disease. Kidney Int 67, 1710-1722.

    Makarova, T., Grebenshikov, N., Egorov, C., Vartapetian, A., and Bogdanov, A. (1989). Prothymosin alpha is an evolutionary conserved protein covalently linked to a small RNA. FEBS Lett 257, 247-250.

    Makitalo, L., Kolho, K.L., Karikoski, R., Anthoni, H., and Saarialho-Kere, U. (2010). Expression profiles of matrix metalloproteinases and their inhibitors in colonic inflammation related to pediatric inflammatory bowel disease. Scand J Gastroenterol 45, 862-871.

    Markova, O.V., Evstafieva, A.G., Mansurova, S.E., Moussine, S.S., Palamarchuk, L.A., Pereverzev, M.O., Vartapetian, A.B., and Skulachev, V.P. (2003). Cytochrome c is transformed from anti- to pro-oxidant when interacting with truncated oncoprotein prothymosin alpha. Biochim Biophys Acta 1557, 109-117.

    Melgar, S., Karlsson, A., and Michaelsson, E. (2005). Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol 288, G1328-1338.

    Mohapatra, S.K., Guri, A.J., Climent, M., Vives, C., Carbo, A., Horne, W.T., Hontecillas, R., and Bassaganya-Riera, J. (2010). Immunoregulatory actions of epithelial cell PPAR gamma at the colonic mucosa of mice with experimental inflammatory bowel disease. PLoS One 5, e10215.

    Paglia, P., Terrazzini, N., Schulze, K., Guzman, C.A., and Colombo, M.P. (2000). In vivo correction of genetic defects of monocyte/macrophages using attenuated Salmonella as oral vectors for targeted gene delivery. Gene Ther 7, 1725-1730.

    Pedersen, G., Saermark, T., Kirkegaard, T., and Brynskov, J. (2009). Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium. Clin Exp Immunol 155, 257-265.

    Puthenedam, M., Wu, F., Shetye, A., Michaels, A., Rhee, K.J., and Kwon, J.H. (2011). Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. Inflamm Bowel Dis 17, 260-267.

    Saleh, M., and Trinchieri, G. (2011). Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11, 9-20.

    Shi, J., Aono, S., Lu, W., Ouellette, A.J., Hu, X., Ji, Y., Wang, L., Lenz, S., van Ginkel, F.W., Liles, M., et al. (2007). A novel role for defensins in intestinal homeostasis: regulation of IL-1beta secretion. J Immunol 179, 1245-1253.

    , A.L., Chen, Y.L., Liao, C.Y., Huang, Y.S., and Wu, C.L. (2001). Prothymosin alpha enhances protective immune responses induced by oral DNA vaccination against pseudorabies delivered by Salmonella choleraesuis. Vaccine 19, 3947-3956.

    Shiwa, M., Nishimura, Y., Wakatabe, R., Fukawa, A., Arikuni, H., Ota, H., Kato, Y., and Yamori, T. (2003). Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem Biophys Res Commun 309, 18-25.

    Smith, H.W. (1965). The Immunization of Mice, Calves and Pigs against Salmonella Dublin and Salmonella Cholerae-Suis Infections. J Hyg (Lond) 63, 117-135.

    Subramanian, C., Hasan, S., Rowe, M., Hottiger, M., Orre, R., and Robertson, E.S. (2002). Epstein-Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J Virol 76, 4699-4708.

    , T., Costello-Boerrigter, L.C., and Burnett, J.C., Jr. (2004). Matrix metalloproteinases: pathways of induction by bioactive molecules. Heart Fail Rev 9, 53-61.

    Van Lint, P., and Libert, C. (2007). Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82, 1375-1381.

    von Lampe, B., Barthel, B., Coupland, S.E., Riecken, E.O., and Rosewicz, S. (2000). Differential expression of matrix metalloproteinases and their tissue inhibitors in colon mucosa of patients with inflammatory bowel disease. Gut 47, 63-73.

    Westbrook, A.M., Szakmary, A., and Schiestl, R.H. (2010). Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models. Mutat Res 705, 40-59.

    Wu, C.L., Shiau, A.L., and Lin, C.S. (1997). Prothymosin alpha promotes cell proliferation in NIH3T3 cells. Life Sci 61, 2091-2101.

    Zakharova, N.I., Sokolov, V.V., Suvorova, A.A., Shiau, A.I., Wu, C.L., and Efstaf'eva, A.G. (2011). [Prothymosin alpha interacts with C-terminal domain of histone H1 and dissociates p53-histone H1 complex]. Mol Biol (Mosk) 45, 679-688.

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE