簡易檢索 / 詳目顯示

研究生: 鄭鈺蓁
Cheng, Yu-Chen
論文名稱: LTE-A系統中D2D通訊模式選擇與功率控制
Joint Mode Selection and Power Control for Underlaying Device-to-Device Communications in LTE-A Cellular Networks
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 84
中文關鍵詞: D2D通訊功率控制模式選擇
外文關鍵詞: D2D Communications, Power Control, Mode Selection
相關次數: 點閱:87下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • D2D通訊現今被視為一項很重要的技術,他能夠讓裝置不需透過基地台便可直接地與其他裝置進行傳輸。在這篇論文裡,D2D通訊於蜂窩網路的架構下,使用蜂窩裝置上行鏈路的頻率資源,直接地與其他用戶進行通訊。特別的是,我們考慮了兩種D2D模式,分別是D2D直接通訊模式與D2D加入中繼站通訊模式。D2D加入中繼站後的傳輸模式在D2D用戶間距離太遠時或D2D之間的傳輸通道不甚理想時能有效改善D2D通訊的性能。針對能夠最大化整體系統的輸出然而同時保證D2D用戶及蜂窩式用戶的訊躁比,我們利用在D2D直接通訊模式與D2D加入中繼站通訊模式之間的模式選擇來確保能得到最大的系統輸出。然而,D2D與蜂窩式用戶之間由於使用共同通道所造成的干擾是個嚴重的問題。因此,我們又提出了一個功率控制演算法來試圖減緩此干擾問題。再者,如何適當地分配及選擇被複用的蜂窩用戶通道以及控制傳輸功率來減緩共同通道所造成的干擾是個挑戰。為了簡化此問題,我們先劃分出可被D2D所複用的蜂窩用戶候選者,再將我們的問題分成兩個子問題,分別是D2D直接通訊模式與D2D加入中繼站通訊模式來進行個別分析。此功率演算法,透過凸函數的優化特性所計算出的最佳功率來最佳化我們的問題。最後的結果顯示透過適當的模式選擇以及功率控制,D2D通訊可以在不對蜂窩網路造成嚴重干擾的前提下有效地改善系統總輸出。

    Device to device (D2D) communications are viewed as a vital technology nowadays, which allow direct transmission between two cellular devices without through base stations. In this thesis, D2D communications nested in a cellular network, transmitting data to each other directly using the uplink frequency resource of cellular users. In particularly, we considered two kinds of modes, direct D2D mode and relay assisted D2D mode, respectively. Relay assisted transmission could efficiently enhance the performance of D2D communications when D2D users are too far away from each other or the quality of D2D channel is not good enough. Aiming at maximizing the overall system throughput while guaranteeing the signal-to-noise-and-interference ratio (SINR) of both D2D pair and cellular links, we utilize
    a mode selection strategy between direct D2D mode and relay assisted mode to ensure the maximal system throughput. However, co-channel interference between the D2D links and the cellular links is a severe problem; thus, we proposed a power control algorithm to mitigate
    the interference. Furthermore, how to properly assign the reusing channel and control the transmit power to mitigate the co-channel interference between the D2D links and the cellular links is a main challenge. To simply our problems, we identified candidate cellular users whose frequency resource can be reused by D2D pair and then decomposed our problem into two subproblems, two modes respectively. Finally, we proposed a power control scheme using the characteristic of convex function to optimize our problems. The results show that by proper mode selection and power control, D2D communications can effectively improve the total throughput without generating harmful interference to cellular networks.

    摘要i Abstract ii Acknowledgements iii Table of Contents iv List of Figures vi List of Tables x List of Abbreviations xi List of Symbols xiii Dedication xv 1 Introduction 1 1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Related Works 7 2.1 D2D Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Power Control and Optimization . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Long Term Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 Protocol Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Long Term Evolution-Advanced . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Key technologies of LTE-Advanced . . . . . . . . . . . . . . . . . . 19 2.4.2.1 Carrier Aggregation . . . . . . . . . . . . . . . . . . . . . 19 2.4.2.2 Enhanced Multiple Antenna Technologies . . . . . . . . . 19 2.4.2.3 Enhanced Uplink Transmission Scheme . . . . . . . . . . 19 2.4.2.4 Enhanced Inter-cell Interference Coordination . . . . . . . 20 2.4.2.5 Relaying . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 D2D Mode Selection Strategy 23 3.1 Scenario Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Problem Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1 Direct D2D Communications . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 Relay Assisted D2D Communications . . . . . . . . . . . . . . . . . 28 3.3 Mode Selection in D2D Communications . . . . . . . . . . . . . . . . . . . 29 4 Joint D2D Mode Selection and Power Control Algorithm 37 4.1 Candidate Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Optimized Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.2 Joint Mode Selection and Power Allocation . . . . . . . . . . . . . . 44 5 Simulations and Results 61 6 Conclusions 77 References 79

    [1] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklo’s, and Z. Tura’nyi, “Design aspects of network assisted device-to-device communications,” IEEE Commun. Mag., vol. 50, no. 3, pp. 170–177, Mar. 2012.
    [2] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, “Device- to-device communication as an underlay to LTE-Advanced networks,” IEEE Commun. Mag., vol. 47, no. 12, pp. 42–49, Dec. 2009.
    [3] Y.-D. Lin and Y.-C. Hsu, “Multihop cellular: A new architecture for wireless communications,” in Proc. IEEE INFOCOM, Mar. 2000, vol. 3, pp. 1273–1282.
    [4] H.Wu, C. Qiao, S. De, and O. Tonguz, “Integrated cellular and ad hoc relaying systems: iCAR,” IEEE J. Sel. Areas Commun., vol. 19, no. 10, pp. 2105–2115, Oct. 2001.
    [5] L. Lei et al., “Operator Controlled Device-to device Communications in LTE- Advanced Networks,” IEEE Wireless Commun., 2012.
    [6] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Feasibility study for Proximity Services (ProSe) (Release 12),” 3GPP TR 22.803 V12.2.0, Jun. 2013.
    [7] X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, “An overview of 3GPP device-todevice proximity services,” IEEE Commun. Mag., vol. 52, no. 4, pp. 40–48, Apr. 2014.
    [8] “Draft Report of 3GPP TSG RAN WG1 Meeting 73 v0.2.0,” Sophia Antipolis, France, May 2013.
    [9] “Draft Report of 3GPP TSG RAN WG1 Meeting 76 v0.1.0,” Sophia-Antipolis, France, Nov. 2013.
    [10] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Commun. Surveys Tuts., accepted for publication.
    [11] C. Mouton, “Device-to-Device Standardization in 3GPP,” RAS Cluster meeting, Lisbon, Portugal, July 2013.
    [12] K. Doppler, C.-H. Yu, C. Ribeiro, and P. Janis, “Mode selection for device-to-device communication underlaying an LTE-Advanced net- work,” in Proc. IEEE WCNC’10, Apr. 2010, pp. 1–6.
    [13] Z. Liu, T. Peng, S. Xiang, and W. Wang, “Mode selection for device-to- device (D2D) communication under LTE-Advanced networks,” in Proc. IEEE ICC’12, June 2012, pp. 5563–5567.
    [14] S. Hakola, T. Chen, J. Lehtoma ki, and T. Koskela, “Device-to-device (D2D) communication in cellular network - Performance analysis of optimum and practical communication mode selection,” in Proc. IEEE WCNC’10, Apr. 2010, pp. 1–6.
    [15] B. Zafar, S. Gherekhloo, and M. Haardt, “Analysis of Multihop Relaying Networks,” IEEE Veh. Tech. Mag., August 2012.
    [16] L. Chen, Y. Huang, F. Xie, Y. Gao, L. Chu, H. He, Y. Li, F. Liang, and Y. Yuan, “Mobile Relay in LTE Advanced Systems,” IEEE Comm. Mag., vol. 51, no. 11, pp. 144–151, Nov. 2013.
    [17] C. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, “On the performance of device-to-device underlay communication with simple power control,” in Proc. IEEE 69th VTC—Spring, Apr. 2009, pp. 1–5.
    [18] Z. Syu and C. Lee, “Spatial constraints of device-to-device communica- tions,” in Proc. 1st Int. BlackSeaCom Conf. Netw., Jul. 2013, pp. 94–98.
    [19] Z. Liu, T. Peng, Q. Lu, and W. Wang, “Transmission capacity of D2D communication under heterogeneous networks with dual bands,” in Proc. 7th Int. ICST Conf. CROWN COM, Jun. 2012, pp. 169-174.
    [20] X. Lin, J. G. Andrews, and A. Ghosh, “Spectrum sharing for device-to-device communication in cellular networks,” IEEE Trans.Wireless Communication ICS., accepted for publication.
    [21] David G.Luenburger and Yinyu,Ye, “Linear and nonlinear programming,” 2007.
    [22] Qilin Qi, Andrew Minturn, and Yaoqing (Lamar) Yang, “An Efficient Water-Filling Algorithm for Power Allocation in OFDM-Based Cognitive Radio,” ICSAI 2012.
    [23] Zhe Wang, Vaneet Aggarwal, Member, IEEE, and Xiaodong Wang, Fellow, IEEE, “Iterative DynamicWater-Filling for Fading Multiple-Access ChannelsWith Energy Harvesting,” IEEE Journal on Selected Areas in Communications, VOL. 33, No. 3, Mar. 2015.
    [24] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 12),” 3GPP TS 36.300 V12.5.0, Mar. 2015.
    [25] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification (Release 12),” 3GPP TS 36.331 V12.5.0, Mar. 2015.
    [26] M. Zulhasnine, C. Huang, and A. Srinivasan, “Efficient resource allocation for device-to- device communication underlaying LTE network,”in Proc. 2010 IEEE Int. Conf. on Wireless and Mobile Computing, Networking and Commun., pp. 368–375.
    [27] M. Wellens, J. Wu, and P. Mahonen, “Evaluation of spectrum occupancy in indoor and outdoor scenario in the context of cognitive radio,” in Proc. 2007 IEEE Int. Conf. on Cognitive Radio Oriented Wireless Networks and Commun., pp. 420–427.
    [28] M. Sikora, J. Laneman, M. Haenggi, D. Costello, and T. Fuja, “Bandwidth- and Power-Efficient Routing in Linear Wireless Networks,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2624–2633, 2006.
    [29] Lei Lei, Yiru Kuang, Xuemin Shen, Chuang Lin, and Zhangdui Zhong, ”Resource Control in Network Assisted Device-to-Device Communications: Solutions and Challenges,” IEEE Communications Magazine, vol. 52, no. 6, pp. 108–117, Jun. 2014.
    [30] C. E. Shannon, ”A mathematical theory of communication,” Bell System Tech. J., pp. 379-423,623-56, 1948.
    [31] T. Riihonen, S.Werner, and R.Wichman, “Hybrid full-duplex/halfduplex relaying with transmit power adaptation,” Wireless Communications, IEEE Transactions on, vol. 10, no. 9, pp. 3074–3085, September 2011.
    [32] Daquan Feng, Lu Lu, Yi Yuan-Wu, Geoffrey Ye Li, Gang Feng, and Shaoqian Li, “Device-to-Device Communications Underlaying Cellular Networks,” IEEE Transactions on Communications, vol. 61, no. 8, pp. 3541-3551, AUGUST 2013.
    [33] A. Gjendemsjo, D. Gesbert, G. Oien, and S. Kiani, “Optimal power allocation and scheduling for two-cell capacity maximization,” in Proc. 2006 IEEE Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 1–6.
    [34] J. L. Troutman, Variational calculus and optimal control: Optimization with elementary convexity, 2nd ed. New York: Springer-Verlag, 1996.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE