簡易檢索 / 詳目顯示

研究生: 黃千惠
Huang, Chien-Hui
論文名稱: 常壓蒸餾蒸餘油的組成與相關參數分析之研究
Composition Analysis of Atmospheric Distillation Residue and the Relative Parameters
指導教授: 黃得時
Huang, Ded-Shih
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 氣相層析芳香烴原油蒸餘油氣相層析質譜核磁共振
外文關鍵詞: distillated oil, crude oil, aromatics, NMR, GC, GC-MS
相關次數: 點閱:177下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   蒸餘油中的多環芳香烴化合物組成常在加氫處理的過程中,造成催化劑的失活,因此油樣中芳香烴化合物的定量分析是煉油製程中非常重要的工作。文獻上已有用來計算汽油或柴油芳香環的參數,但這些方法並不一定適用於常壓蒸餾蒸餘油。本研究的主要目的是發展便捷的方法以估算油樣中芳香烴化合物的含量。
      本研究主要是由氣相層析及氣相層析質譜分析鑑定油品中芳香烴化合物的組成,並藉此計算各系列化合物之相對含量。由芳香烴化合物的組成分析統計所計算的結果顯示:芳香環上的取代基鏈長平均約為2,結合此值與氫核磁共振光譜之結果可計算出油品中飽和烴、芳香烴及環烷烴化合物之含量,此一計算結果與利用管柱層析分析的結果比較,其差異約在6%以內;而由碳核磁共振光譜的定量分析的結果顯示110~140 ppm (Ar-C)與0~50 ppm (Ali-C)的積分比值(Ar-C/Ali-C)可直接用來估算原油或蒸餘油中芳香烴的百分組成。

      The polycyclic aromatic hydrocarbons (PAHs) in the atmospheric distillation residue is one of the major components involved in the catalyst deactivation during the hydrotreatment processes. Although several methods in measuring the aromatic contents of gasoline or diesel oil have been reported, there is no  appropriate method for measuring the aromatic content of the atmospheric distillation residue. In the current studies, efforts have been focus on solving the problem addressed above.
      The detailed composition analysis of GC and GC-EIMS enables us to classify aromatic compounds into seven major classes: alkylbenzenes, benzonaphthothiophenes, biphenyls, dibenzothiophenes, fluorenes, naphthalenes, and phenanthrenes. The results from quantitative analysis indicated that these seven compound classes describe more than 80% of aromatic contents in the crude oil. Accordingly, data from both GC and GC-EIMS analysis indicated that the average chain length of the substituents on the aromatic rings was about 2. The quantitative studies on the basis of 1H-NMR and 13C-NMR were also performed and the ratios of aliphatic hydrocarbon, naphthene and aromatic hydrocarbons were determined. The aromatic contents estimated from 1H-NMR is in agreement with that obtained from liquid chromatography analysis. The difference between these two methods in most cases is less than 6%. In addition, the peak area ratio on 110-140 ppm (Ar-C) and 0-50 ppm (Ali-C) obtained from 13C-NMR can be also applied to estimate the aromatic content of atmospheric distillation residues or crude oils.

    中文摘要…………………………………………………………i Abstract…………………………………………………………ii 誌謝………………………………………………………………iii 表目錄……………………………………………………………vii 圖目錄……………………………………………………………viii 第一章 序論……………………………………………………1  一、前言………………………………………………………1  二、石油的組成與分類………………………………………1  三、石油的物理與化學性質…………………………………6  四、石油的分餾………………………………………………10  五、石油煉製工業……………………………………………11  六、蒸餾油與蒸餘油…………………………………………14  七、芳香環數…………………………………………………15  八、研究目的…………………………………………………20 第二章 實驗……………………………………………………24  一、藥品與樣品………………………………………………24  二、器材………………………………………………………25  三、儀器………………………………………………………26  四、管柱層析分離油樣………………………………………27  五、高效能液相層析之分析…………………………………28  六、氣相層析質譜之分析……………………………………29  七、氣相層析之分析…………………………………………30  八、核磁共振光譜之分析……………………………………30 第三章 結果……………………………………………………32  一、管柱層析…………………………………………………32  二、元素分析…………………………………………………33  三、氣相層析-電子撞擊游離質譜分析……………………34  四、氣相層析…………………………………………………39  五、核磁共振光譜分析………………………………………42 第四章 討論……………………………………………………45  一、氣相層析-電子撞擊游離質譜分析……………………45  二、氣相層析…………………………………………………55  三、高效能液相層析…………………………………………56  四、核磁共振光譜……………………………………………58  五、結論………………………………………………………60 第六章 參考資料………………………………………………62 附表一……………………………………………………………67 附錄………………………………………………………………70

    Absi Halabi, M.; Stanilaus, A. and Trimm, D. L. Coke Formation on Catalysts During the Hydroprocessing of Heavy Oils, Appl. Catal. (1991), 72, 193-215.

    Acevedo, S.; Escobar, G.; Ranaudo, M. A. and Rizzo, A. Molecular Weight Properties of Asphaltenes Calculated from GPC Data for Octylated Asphaltenes, Fuel (1998), 77, 853-858.

    Acevedo, S.; Gutierrez, L. B.; Negrin, G. and Pereira, J. C. Molecular Weight of Petroleum Asphaltene: A Comparison between Mass Spectrometry and Vapor Pressure Osmometry, Energy & Fuels (2005), 19, 1548-1560.

    ASTM D938-04, Standard Test Method for Congealing Point of Petroleum Waxes, Including Petrolatum.

    ASTM D2500-05, Standard Test Method for Base Number of Petroleum Products by Potentiometric Perchloric Acid Titration, ASTM D2896-05.
    Standard Test Method for Cloud Point of Petroleum Products.

    ASTM D2502-04, Standard Test Method for Estimation of Mean Relative Molecular Mass of Petroleum Oils from Viscosity Measurements.

    ASTM D2786-91, Standard Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturates Fractions by High Ionizing Voltage Mass Spectrometry.

    ASTM D3117-03, Standard Test Method for Wax Appearance Point of Distillate Fuels.

    ASTM D3239-91, Standard Test Method for Aromatic Types Analysis of Gas-Oil Aromatic Fractions by High Ionizing Voltage Mass Spectrometry.

    ASTM D4629-02, Standard Test Method for Trace Nitrogen in Liquid Petroleum Hydrocarbons by Syringe/Inlet Oxidative Combustion and Chemiluminescence Detection.

    ASTM D4739-02, Standard Test Method for Base Number Determination by Potentiometri Titration.

    ASTM D5762-05, Standard Test Method for Nitrogen in Petroleum and Petroleum Products by Boat-Inlet Chemiluminescence.

    Briker, Y.; Ring, Z.; Iacchelli, A.; McLean, N.; Rahimi, P. M. and Fairbridge, C. Diesel Fuel Analysis by GC-FIMS: Aromatics, n-Paraffins, and Isoparaffins, Energy & Fuels (2001), 15, 23-27.

    Brown, D.; Earnshaw, D. G.; McDonald, F. R. and Jensen, H. B. Gas-Liquid Chromatographic Separation and Spectrometric Identification of Nitrogen Bases in Hydrocracked Shale Oil Naphtha, Analytical Chemistry (1970), 42, 146-151.

    Claudy, P.; Letoffe, J.-M.; Chague, B. and Orrit, J. Crude Oils and Their Distillates: Characterization by Differential Scanning Calorimetry, Fuel (1988), 67, 58-61.

    Grimmer, G. and Naujack, K.-W. Determination of Basic Nitrogen– Containing Polycyclic Aromatic Compounds (Azaarenes) in Petroleum and Petroleum Products, Fresenius Z Anal Chem (1985), 321, 27-31.

    Hansen, A. B.; Larsen, E.; Pedersen, W. B. and Nielsen, A. B. Wax Precipitation from North Sea Crude Oils. 3. Precipitation and Dissolution of Wax Studied by Differential Scanning Calorimetry, Energy & Fuels (1991), 5, 914-923.

    Japanwala, S.; Chung, K. H.; Dettman, H. D. and Gray, M. R. Quality of Distillates from Repeated Recycle of Residue, Energy & Fuels (2002), 16, 477-484.

    Jokuty, P.; Whiticar, S.; Wang, Z.; Landriault, M.; Sigouin, L. and Mullin, J. A New Method for the Determination of Wax Content of Crude Oils, Spill Science & Technology Bulletin (1996), 3, 195-198.

    Kapur, G. S.; Chopra, A. and Sarpal, A. S. Estimation of Total Aromatic Content of Vacuum Gas Oil (VGO) Fractions (370-560oC) by 1H NMR Spectroscopy, Energy & Fuels (2005), 19, 1065-1071.

    Kapur, G. S.; Singh, A. P. and Sarpal, A. S. Determination of Aromatics and Naphthenes in Straight Run Gasoline by 1H NMR Spectroscopy, Fuel (2000), 79, 1023-1029.

    Krom, C. J., Determination of the Wax Content of Bitumens, Journal of the Institute of Petroleum (1968), 54, 232-240.

    Leite, L. F. M.; Camillo, M. C. F.; Deane, G. H. W.; Brandao, L. M.; Cintra, R. H. and Carvalho, J. R. F. HP-GPC Characterization of Asphalts, Journal of High Resolution Chromatography (1989), 12, 498-500.

    McKay, J. F.; Weber, J. H. and Latham, D. R. Characterization of Nitrogen Bases in High-Boiling Petroleum Distillates, Analytical Chemistry (1976), 48, 891-898.

    Meusinger, R. Gasoline analysis by 1H Nuclear Magnetic Resonance Spectroscopy, Fuel (1996), 75, 1235-1243.

    Okuno, I.; Latham, D. R. and Haines, W. E. Type Analysis of Nitrogen in Petroleum Using Nonaqueous Potentiometric Titration and Lithium Aluminum Hydride Reduction, Analytical Chemistry (1965), 37, 54-57.

    Pedersen, W. B.; Hansen, A. B.; Larsen, E. and Nielsen, A. B. Wax Precipitation from North Sea Crude Oils. 2. Solid-Phase Content as Function of Temperature Determined by Pulsed NMR, Energy & Fuels (1991), 5, 908-913.

    Richter, F. P.; Caesar, P. D.; Meisel, S. L. and Offenhauer, R. D. Distribution of Nitrogen in Petroleum According to Basicity, Industrial and Engineering Chemistry (1952), 44, 2601-2605.

    Ronningsen, H. P. and Bjorndal, B. Wax Precipitation from North Sea Crude Oils. 1. Crystallization and Dissolution Temperatures, and Newtonian and Non-Newtonian Flow Properties, Energy & Fuels (1991), 5, 895-908.

    Schmitter, J.-M.; Ignatiadis, I.; Arpino, P. and Guiochon, G. Selective Isolation of Nitrogen Bases from Petroleum, Analytical Chemistry (1983), 55, 1685-1688.

    Seymour, R. B., and Carraher, C. E.著, 薛敬和編譯, 高分子化學(1987), 1-607, 高立發行.

    Sevastyanov, G. V. and Gaeva, L. I. Petroleum and Gas Processing, Chemistry & Technology of Fuels & Oils (1978), 14, 467-470.

    SPE 37239, Onset Crystallization Temperature and Deposit Amount for Waxy Crudes: Experimental Determination and Thermodynamic Modelling.

    SPE 54006, Determination and Prediction of Wax Deposition from Kuwaiti Crude Oils.

    Stille, J. K.著, 江家臨譯, 高分子化學概論(1970)第四章, 37-52, 徐氏基金會.

    Tanaka, R.; Sato, S.; Takanohashi, T.; Hunt, J. E. and Winans, R. E. Analysis of the Molecular Weight Distribution of Petroleum Asphaltenes Using Laser Desorption-Mass Spectrometry, Energy & Fuels (2004), 18, 1405-1413.

    Telouk, A. B.; Loiseleur, H.; Barreau, A.; Behar, E. and Jose, J. Determination of the Average Molecular Weight of Petroleum Cuts by Vapor Pressure Depression, Fluid Phase Equilibria (1995), 110, 315-339.

    大津隆行, 木下雅悅著, 薛敬和編譯, 高分子化學實驗法(1983), 第二章, 21-88, 高立圖書.

    林建中編撰, 高分子化學原理(1972), 1-176, 歐亞書局.

    張信貞, 科儀新知(1988), 第十卷第一期, 44-55.

    黃得時, 有機物質熱成熟度的研究(II)(1995), 1-98

    下載圖示 校內:2007-06-23公開
    校外:2008-06-23公開
    QR CODE