簡易檢索 / 詳目顯示

研究生: 浩然
Panichkittikul Nitsara
論文名稱: 氧化鈣吸附程序整合於蔗渣氣化以生產綠色氫氣之程序設計
PROCESS DESIGN OF GREEN HYDROGEN PRODUCTION VIA BAGASSE GASIFICATION INTEGRATED WITH CALCIUM OXIDE ADSORPTION PROCESS
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 76
外文關鍵詞: Hydrogen, Bagasse, Gasification, CO2 capture, Process simulation
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This project focuses on the production of green hydrogen from bagasse gasification integrated with calcium oxide (CaO) adsorption. Green hydrogen refers to hydrogen produced from renewable energy sources such as wind, solar, hydropower, geothermal energy, or biomass, making it eco-friendly with minimal to zero greenhouse gas emissions. Aspen Plus version 12 simulation software was employed to design and simulate the green hydrogen process. Steam and supercritical water were used as gasifying agents in the biomass gasification process. To improve hydrogen production, the bagasse gasification was to be integrated with the water gas shift process. Furthermore, the CaO adsorption was subsequently implemented for CO2 capture. Simulation results revealed that the steam gasification integrated with CaO adsorption (SG-CaO) should be conducted at a gasifier temperature of 950 ℃, a gasifier pressure of 1 bar, a steam to biomass mass ratio of 0.1, a water gas shift reactor temperature of 150 ℃, a water to biomass mass ratio of 0.6, a carbonator temperature of 850 °C, a CaO to biomass mass ratio of 1.9, and a regenerator temperature of 900 °C. This integration results in the production of green hydrogen with a purity of 99.95%. Supercritical water gasification integrated with CaO adsorption (SCWG-CaO) should be carried out at a gasifier temperature of 1200 ℃, a gasifier pressure of 221 bar, a supercritical water to biomass mass ratio of 0.1, a water gas shift reactor temperature of 150 ℃, a water to biomass mass ratio of 0.6, a carbonator temperature of 850 °C, a CaO to biomass mass ratio of 1.94, and a regenerator temperature of 900 °C. This integration leads to the production of green hydrogen with a purity of 99.99%. When an energy analysis of both processes was performed, it was found that the hydrogen yield (14.16%) and energy efficiency (42.32%) of SCWG-CaO is superior to that hydrogen yield (14.12%) and energy efficiency (40.26%) of SG-CaO. From our study, it can be concluded that the supercritical water gasification of bagasse integrated with CaO adsorption is suitable for green hydrogen production in terms of hydrogen purity, hydrogen yield and energy efficiency.

    ABSTRACT I Acknowledgements II Table of Contents III List of Tables VI List of Figures IX CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Objectives 3 1.3 Scopes of work 4 1.4 Expected outputs 4 CHAPTER II LITERATURE REVIEW 5 2.1 Biomass 5 2.2 Biomass energy 5 2.3 Advantages of bioenergy/biomass 5 2.4 Disadvantages of bioenergy/biomass 6 2.5 Process of transforming biomass into various forms of energy10 6 2.6 Bagasse 7 2.7 Gasification process 8 2.8 Syngas 9 2.9 Supercritical water 10 2.10 CO2 capture process 10 2.11 Literature review 11 CHAPTER III RESEARCH METHODOLOGY 13 3.1 Process overview of hydrogen production from bagasse gasification integrated with CaO adsorption 13 3.2 Process model of hydrogen production from bagasse gasification 15 3.2.1 Validation of simulation results with experimental data 18 3.2.2 Investigation on effect of operating conditions in bagasse gasification 20 3.2.3 Investigation on effect of operating conditions in water gas shift reactor 20 3.3 Process model of CaO adsorption for CO2 capture 21 3.3.1 Investigation on effect of operating conditions in CaO adsorption on hydrogen production 23 3.4 Simulation approach 24 CHAPTER IV RESULTS AND DISCUSSION 30 4.1 Comparison results between simulation and experiment 30 4.2 Operating conditions in gasification 32 4.2.1 Effect of gasifier temperature on hydrogen production 32 4.2.2 Effect of gasifier pressure on hydrogen production 34 4.2.3 Effect of gasifying agent to biomass mass ratio on hydrogen production 36 4.2.4 Effect of gasifier temperature on lower heating value 38 4.3 Operating conditions in water gas shift process 39 4.3.1 Effect of water gas shift reactor temperature on hydrogen production 40 4.3.2 Effect of water to biomass mass ratio on hydrogen production 41 4.4 Operating conditions in CaO adsorption 42 4.4.1 Effect of carbonator temperature on hydrogen production 42 4.4.2 Effect of CaO to biomass mass ratio on hydrogen production 43 4.4.3 Effect of regenerator temperature on CO2 removal 44 4.5 Comparison of results between steam gasification and supercritical water gasification 45 CHAPTER V CONCLUSION 54 5.1 Conclusions 54 5.2 Recommendations 55 REFERENCES 56 APPENDIX 59 APPENDIX A Steam gasification integrated with CaO adsorption 60 APPENDIX B Supercritical water integrated with CaO adsorption 69

    (1) Gopaul, S. G.; Dutta, A.; Clemmer, R. Chemical Looping Gasification for Hydrogen Production: A Comparison of Two Unique Processes Simulated Using ASPEN Plus. Int J Hydrogen Energy 2014, 39 (11), 5804–5817.
    (2) สำนักงานคณะกรรมการนโยบายวิทยาศาสตร์เทคโนโลยีและนวัตกรรมแห่งชาติ (สวทน.). วิทยาศาสตร์ เทคโนโลยี และนวัตกรรม เพื่อพัฒนาพลังงานชีวมวล | Horizon Magazine. http://horizon.sti.or.th/node/32
    (3) Motta, I. L.; Miranda, N. T.; Maciel Filho, R.; Wolf Maciel, M. R. Sugarcane Bagasse Gasification: Simulation and Analysis of Different Operating Parameters, Fluidizing Media, and Gasifier Types. Biomass Bioenergy 2019, 122, 433–445.
    (4) Begum, S.; Rasul, M. G.; Akbar, D.; Ramzan, N. Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks. Energies (Basel) 2013, 6 (12), 6508–6524.
    (5) Wang, C.; Li, L.; Chen, Y.; Ge, Z.; Jin, H. Supercritical Water Gasification of Wheat Straw: Composition of Reaction Products and Kinetic Study. Energy 2021, 227, 120449.
    (6) Macrì, D.; Catizzone, E.; Molino, A.; Migliori, M. Supercritical Water Gasification of Biomass and Agro-Food Residues: Energy Assessment from Modelling Approach. Renew Energy 2020, 150, 624–636.
    (7) กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน. คู่มือฝึกอบรมภาคปฏิบัติด้านพลังงานทดแทน แก๊สซิฟิเคชั่นจากชีวมวล.
    (8) Kumar, A.; Jones, D. D.; Hanna, M. A. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies (Basel) 2009, 2 (3), 556–581.
    (9) D., L.-P.; Prado, J. M.; P., T.-M.; Forster-Carneiro, T.; Meireles, M. A. A. Supercritical Water Gasification of Biomass for Hydrogen Production: Variable of the Process. Food Public Health 2015, 5 (3), 92–101.

    (10) Energy Vision Co., Ltd. พลังงานชีวมวล. http://www.energyvision.co.th/14424507/%E0%B8%9E%E0%B8%A5%E0%B8%B1%E0%B8%87%E0%B8%87%E0%B8%B2%E0%B8%99%E0%B8%8A%E0%B8%B5%E0%B8%A7%E0%B8%A1%E0%B8%A7%E0%B8%A5
    (11) โครงการวิจัยทุนอุดหนุนวิจัย มก. ใช้ประโยชน์ชานอ้อยผลิตแก๊สมีเทนโดยวิธีการหมักแบบสองขั้นตอน – Kasetsart University Research and Development Institute. https://www3.rdi.ku.ac.th/?p=26558
    (12) ห้องปฏิบัติการวิเคราะห์ค่าทางน้ำตาลและสารอนุพันธ์ ม.เกษตรศาสตร์, ศ. เปลี่ยนชานอ้อยเป็น ‘Smart Products’ นวัตกรรมสร้างถนน. https://www.sentangsedtee.com/job-is-money/article_201903
    (13) Plastics Institute of Thailand. เทคโนโลยีแก๊สซิฟิเคชันเศษไม้.
    (14) Syngas / Producer Gas - EnggCyclopedia. https://enggcyclopedia.com/2012/01/syngas-producer-gas/
    (15) Kumari, P.; Mohanty, B. Hydrogen-Rich Gas Production with CO2 Capture from Steam Gasification of Pine Needle Using Calcium Oxide: Experimental and Modeling Study. Int J Energy Res 2020, 44 (8), 6927–6938.
    (16) Ciuffi, B.; Chiaramonti, D.; Rizzo, A. M.; Frediani, M.; Rosi, L. A Critical Review of SCWG in the Context of Available Gasification Technologies for Plastic Waste. Applied Sciences (Switzerland) 2020, 10 (18).
    (17) Hydrogen from biomass gasification | Bioenergy. https://www.ieabioenergy.com/blog/publications/hydrogen-from-biomass-gasification/
    (18) Motta, I. L.; Miranda, N. T.; Maciel Filho, R.; Wolf Maciel, M. R. Sugarcane Bagasse Gasification: Simulation and Analysis of Different Operating Parameters, Fluidizing Media, and Gasifier Types. Biomass Bioenergy 2019, 122, 433–445.
    (19) Shahbaz, M.; Yusup, S.; Inayat, A.; Ammar, M.; Patrick, D. O.; Pratama, A.; Naqvi, S. R. Syngas Production from Steam Gasification of Palm Kernel Shell with Subsequent CO2 Capture Using CaO Sorbent: An Aspen Plus Modeling. Energy and Fuels 2017, 31 (11), 12350–12357.
    (20) Li, B.; Chen, H.; Yang, H.; Wang, X.; Zhang, S.; Dai, Z. Modeling and Simulation of Calcium Oxide Enhanced H2 Production from Steam Gasification of Biomass. J Biobased Mater Bioenergy 2011, 5 (3), 378–384.
    (21) Vassilev, S. V.; Baxter, D.; Andersen, L. K.; Vassileva, C. G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89 (5), 913–933.
    (22) Loha, C.; Chattopadhyay, H.; Chatterjee, P. K. Thermodynamic Analysis of Hydrogen Rich Synthetic Gas Generation from Fluidized Bed Gasification of Rice Husk. Energy 2011, 36 (7), 4063–4071.
    (23) Loha, C.; Chattopadhyay, H.; Chatterjee, P. K. Thermodynamic Analysis of Hydrogen Rich Synthetic Gas Generation from Fluidized Bed Gasification of Rice Husk. Energy 2011, 36 (7), 4063–4071.
    (24) Pala, L. P. R.; Wang, Q.; Kolb, G.; Hessel, V. Steam Gasification of Biomass with Subsequent Syngas Adjustment Using Shift Reaction for Syngas Production: An Aspen Plus Model. Renew Energy 2017, 101, 484–492.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE