| 研究生: |
浩然 Panichkittikul Nitsara |
|---|---|
| 論文名稱: |
氧化鈣吸附程序整合於蔗渣氣化以生產綠色氫氣之程序設計 PROCESS DESIGN OF GREEN HYDROGEN PRODUCTION VIA BAGASSE GASIFICATION INTEGRATED WITH CALCIUM OXIDE ADSORPTION PROCESS |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 外文關鍵詞: | Hydrogen, Bagasse, Gasification, CO2 capture, Process simulation |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This project focuses on the production of green hydrogen from bagasse gasification integrated with calcium oxide (CaO) adsorption. Green hydrogen refers to hydrogen produced from renewable energy sources such as wind, solar, hydropower, geothermal energy, or biomass, making it eco-friendly with minimal to zero greenhouse gas emissions. Aspen Plus version 12 simulation software was employed to design and simulate the green hydrogen process. Steam and supercritical water were used as gasifying agents in the biomass gasification process. To improve hydrogen production, the bagasse gasification was to be integrated with the water gas shift process. Furthermore, the CaO adsorption was subsequently implemented for CO2 capture. Simulation results revealed that the steam gasification integrated with CaO adsorption (SG-CaO) should be conducted at a gasifier temperature of 950 ℃, a gasifier pressure of 1 bar, a steam to biomass mass ratio of 0.1, a water gas shift reactor temperature of 150 ℃, a water to biomass mass ratio of 0.6, a carbonator temperature of 850 °C, a CaO to biomass mass ratio of 1.9, and a regenerator temperature of 900 °C. This integration results in the production of green hydrogen with a purity of 99.95%. Supercritical water gasification integrated with CaO adsorption (SCWG-CaO) should be carried out at a gasifier temperature of 1200 ℃, a gasifier pressure of 221 bar, a supercritical water to biomass mass ratio of 0.1, a water gas shift reactor temperature of 150 ℃, a water to biomass mass ratio of 0.6, a carbonator temperature of 850 °C, a CaO to biomass mass ratio of 1.94, and a regenerator temperature of 900 °C. This integration leads to the production of green hydrogen with a purity of 99.99%. When an energy analysis of both processes was performed, it was found that the hydrogen yield (14.16%) and energy efficiency (42.32%) of SCWG-CaO is superior to that hydrogen yield (14.12%) and energy efficiency (40.26%) of SG-CaO. From our study, it can be concluded that the supercritical water gasification of bagasse integrated with CaO adsorption is suitable for green hydrogen production in terms of hydrogen purity, hydrogen yield and energy efficiency.
(1) Gopaul, S. G.; Dutta, A.; Clemmer, R. Chemical Looping Gasification for Hydrogen Production: A Comparison of Two Unique Processes Simulated Using ASPEN Plus. Int J Hydrogen Energy 2014, 39 (11), 5804–5817.
(2) สำนักงานคณะกรรมการนโยบายวิทยาศาสตร์เทคโนโลยีและนวัตกรรมแห่งชาติ (สวทน.). วิทยาศาสตร์ เทคโนโลยี และนวัตกรรม เพื่อพัฒนาพลังงานชีวมวล | Horizon Magazine. http://horizon.sti.or.th/node/32
(3) Motta, I. L.; Miranda, N. T.; Maciel Filho, R.; Wolf Maciel, M. R. Sugarcane Bagasse Gasification: Simulation and Analysis of Different Operating Parameters, Fluidizing Media, and Gasifier Types. Biomass Bioenergy 2019, 122, 433–445.
(4) Begum, S.; Rasul, M. G.; Akbar, D.; Ramzan, N. Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks. Energies (Basel) 2013, 6 (12), 6508–6524.
(5) Wang, C.; Li, L.; Chen, Y.; Ge, Z.; Jin, H. Supercritical Water Gasification of Wheat Straw: Composition of Reaction Products and Kinetic Study. Energy 2021, 227, 120449.
(6) Macrì, D.; Catizzone, E.; Molino, A.; Migliori, M. Supercritical Water Gasification of Biomass and Agro-Food Residues: Energy Assessment from Modelling Approach. Renew Energy 2020, 150, 624–636.
(7) กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน. คู่มือฝึกอบรมภาคปฏิบัติด้านพลังงานทดแทน แก๊สซิฟิเคชั่นจากชีวมวล.
(8) Kumar, A.; Jones, D. D.; Hanna, M. A. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies (Basel) 2009, 2 (3), 556–581.
(9) D., L.-P.; Prado, J. M.; P., T.-M.; Forster-Carneiro, T.; Meireles, M. A. A. Supercritical Water Gasification of Biomass for Hydrogen Production: Variable of the Process. Food Public Health 2015, 5 (3), 92–101.
(10) Energy Vision Co., Ltd. พลังงานชีวมวล. http://www.energyvision.co.th/14424507/%E0%B8%9E%E0%B8%A5%E0%B8%B1%E0%B8%87%E0%B8%87%E0%B8%B2%E0%B8%99%E0%B8%8A%E0%B8%B5%E0%B8%A7%E0%B8%A1%E0%B8%A7%E0%B8%A5
(11) โครงการวิจัยทุนอุดหนุนวิจัย มก. ใช้ประโยชน์ชานอ้อยผลิตแก๊สมีเทนโดยวิธีการหมักแบบสองขั้นตอน – Kasetsart University Research and Development Institute. https://www3.rdi.ku.ac.th/?p=26558
(12) ห้องปฏิบัติการวิเคราะห์ค่าทางน้ำตาลและสารอนุพันธ์ ม.เกษตรศาสตร์, ศ. เปลี่ยนชานอ้อยเป็น ‘Smart Products’ นวัตกรรมสร้างถนน. https://www.sentangsedtee.com/job-is-money/article_201903
(13) Plastics Institute of Thailand. เทคโนโลยีแก๊สซิฟิเคชันเศษไม้.
(14) Syngas / Producer Gas - EnggCyclopedia. https://enggcyclopedia.com/2012/01/syngas-producer-gas/
(15) Kumari, P.; Mohanty, B. Hydrogen-Rich Gas Production with CO2 Capture from Steam Gasification of Pine Needle Using Calcium Oxide: Experimental and Modeling Study. Int J Energy Res 2020, 44 (8), 6927–6938.
(16) Ciuffi, B.; Chiaramonti, D.; Rizzo, A. M.; Frediani, M.; Rosi, L. A Critical Review of SCWG in the Context of Available Gasification Technologies for Plastic Waste. Applied Sciences (Switzerland) 2020, 10 (18).
(17) Hydrogen from biomass gasification | Bioenergy. https://www.ieabioenergy.com/blog/publications/hydrogen-from-biomass-gasification/
(18) Motta, I. L.; Miranda, N. T.; Maciel Filho, R.; Wolf Maciel, M. R. Sugarcane Bagasse Gasification: Simulation and Analysis of Different Operating Parameters, Fluidizing Media, and Gasifier Types. Biomass Bioenergy 2019, 122, 433–445.
(19) Shahbaz, M.; Yusup, S.; Inayat, A.; Ammar, M.; Patrick, D. O.; Pratama, A.; Naqvi, S. R. Syngas Production from Steam Gasification of Palm Kernel Shell with Subsequent CO2 Capture Using CaO Sorbent: An Aspen Plus Modeling. Energy and Fuels 2017, 31 (11), 12350–12357.
(20) Li, B.; Chen, H.; Yang, H.; Wang, X.; Zhang, S.; Dai, Z. Modeling and Simulation of Calcium Oxide Enhanced H2 Production from Steam Gasification of Biomass. J Biobased Mater Bioenergy 2011, 5 (3), 378–384.
(21) Vassilev, S. V.; Baxter, D.; Andersen, L. K.; Vassileva, C. G. An Overview of the Chemical Composition of Biomass. Fuel 2010, 89 (5), 913–933.
(22) Loha, C.; Chattopadhyay, H.; Chatterjee, P. K. Thermodynamic Analysis of Hydrogen Rich Synthetic Gas Generation from Fluidized Bed Gasification of Rice Husk. Energy 2011, 36 (7), 4063–4071.
(23) Loha, C.; Chattopadhyay, H.; Chatterjee, P. K. Thermodynamic Analysis of Hydrogen Rich Synthetic Gas Generation from Fluidized Bed Gasification of Rice Husk. Energy 2011, 36 (7), 4063–4071.
(24) Pala, L. P. R.; Wang, Q.; Kolb, G.; Hessel, V. Steam Gasification of Biomass with Subsequent Syngas Adjustment Using Shift Reaction for Syngas Production: An Aspen Plus Model. Renew Energy 2017, 101, 484–492.