簡易檢索 / 詳目顯示

研究生: 張雲清
Zhang, Yun-Chin
論文名稱: 以數位訊號處理器為基礎之磁浮控制系統設計與實現
Design and Implementation of DSP-Based Magnetic Levitation Control Systems
指導教授: 何明字
Ho, M. T.
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 114
中文關鍵詞: 相位領先順滑模態磁浮系統
外文關鍵詞: magnetic levitation system, sliding mode, phase lead
相關次數: 點閱:94下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本論文旨在設計與研製一套磁浮控制系統,整體系統係由磁浮受控體、位置感測器、電流驅動器及控制器四個部份所組成。磁浮受控體由電磁鐵與鐵球所構成,經過系統建模與分析後可知其本身為一非線性且不穩定的系統。在本論文中,吾人依不同的控制理論,分別設計了相位領先控制器與順滑模態控制器來達到定位控制之目的,而定位控制乃指控制鐵球磁浮於空中並保持平衡不落下。此外在本系統中,吾人設計了位置感測器用來偵測鐵球的位置以作為系統的回授訊號;電流驅動器之功能為提供電磁鐵線圈穩定的電流,以產生磁力來平衡鐵球所受之重力。在控制器的實現方面,吾人採用德州儀器公司所生產的定點式運算之數位訊號處理器,型號為TMS320F2812,利用其快速的運算能力和豐富的運動介面以及通訊介面,進而實現效能優越的數位控制器。最後,由模擬結果及實驗結果得知順滑模態控制器的性能及強健性皆較優於相位領先控制器,由此也驗證本論文理論及實作之一致性。

    Abstract

    The main objective of this thesis is to design and implement a magnetic levitation control system, which consists of the plant, optical position sensor, current driver and controller. The plant consists of an electromagnetic coil and iron-ball. From system modeling, it shows that the plant is nonlinear and unstable. In this thesis, the phase-lead controller and sliding-mode controller are designed to stabilize the plant such that the iron-ball keeps floating in the air. In this control system, the optical position sensor is used to sense the position of the iron-ball. The current driver is used to supply the stable current to the electromagnetic coil. In the implementation of the controller, the Texas Instruments TMS320F2812 digital signal processor is used to implement the high performance digital controller with designed peripheral circuits. This processor provides highly integrated solutions for this demanding control system. Finally, from simulation and experimental results, it shows that the sliding-mode controller has superior performance and robustness. A good agreement between the theoretical development and experimental investigation is also obtained.

    目 錄 頁次 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖表目錄 VII 第一章 緒論 1-1 1-1 研究背景 1-1 1-2 研究動機及目的 1-2 1-3 研究步驟 1-3 1-4 相關文獻回顧 1-6 1-5 本文結構 1-6 第二章 磁浮控制系統簡介及系統建模 2-1 2-1 前言 2-1 2-2 磁浮控制系統基本原理 2-1 2-3 磁浮受控體 2-4 2-4 電流驅動器 2-6 2-5 位置感測器 2-8 2-6 系統數學模型 2-13 第三章 順滑模態理論基礎 3-1 3-1 前言 3-1 3-2 順滑模態之介紹 3-1 3-3 順滑條件與迫近條件之探討 3-2 3-4 順滑模態設計方法 3-4 第四章 控制器之設計與分析 4-1 4-1 前言 4-1 4-2 相位領先控制器設計原理 4-2 4-3 順滑模態控制器設計原理 4-12 4-4 模擬響應結果與比較 4-15 4-4-1 相位領先控制器模擬結果 4-15 4-4-2 順滑模態控制器模擬結果 4-18 4-4-3 模擬響應比較 4-24 第五章 硬體電路及軟體程式介紹 5-1 5-1 前言 5-1 5-2 硬體電路 5-1 5-2-1 TMS320F2812核心 5-1 5-2-1-1 ADC 介面 5-2 5-2-1-2 SCI介面 5-6 5-2-2周邊硬體電路 5-9 5-2-2-1解碼電路設計 5-10 5-2-2-2類比/數位驅動電路 5-12 5-2-2-3 USB介面電路 5-17 5-2-2-4傳輸資料之封包定義與交握協定 5-18 5-3 軟體程式 5-21 5-3-1 Code Composer Studio簡介 5-22 5-3-2程式發展流程 5-24 第六章 實驗結果 6-1 6-1 前言 6-1 6-2 系統程式流程 6-1 6-3 相位領先控制器之定位實現 6-3 6-4 順滑模態控制器之定位實現 6-8 6-5 實作響應比較 6-14 第七章 結論與未來展望 7-1 7-1 結論 7-1 7-2 未來展望 7-1 參考文獻 附錄A 圖A-1 TMS320F2812記憶體位置解碼電路圖、圖A-2 A/D轉換電路圖 附錄B 圖B-1 D/A轉換電路圖、圖B-2感測器與電流驅動器整合電路圖 附錄C 圖C-1 USB傳輸介面電路圖

    參考文獻

    [1] 楊佳撰,「磁浮車控制系統之設計與研究」,國立中央大學機械工程學系碩士論文,民國八十九年。
    [2] 曾有光,「運輸用可控永磁式磁浮系統」,國立清華大學電機工程學系碩士論文,民國八十四年。
    [3] 王金印,「磁浮在風洞應用之控制與實現」,國立成功大學航空太空工程學系碩士論文,民國八十年。
    [4] 吳海文,「多進多出磁浮控制與實現之風洞應用」,國立成功大學航空太空學系碩士論文,民國七十九年。
    [5] P. Tsiotras and M. Arcak, “Low-Bias Control of AMB Subject to Voltage Saturation: State-Feedback and Observer Designs,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 2, pp. 262-273, 2005.
    [6] D. L. Trumper, S. M. Olson, and P. K. Subrahmanyan, “Linearizing Control of Magnetic Suspension Systems,” IEEE Transactions on Control Systems Technology, Vol. 5, No. 4, pp. 427-437, 1997.
    [7] W. G. Hurley and W. H. Wolfle,“Electromagnetic Design of a Magnetic Suspension System,”IEEE Transactions on Education, Vol. 40, No. 2, pp. 124-130, 1997.
    [8] J. L. Lin and B. C. Tho, “Analysis and -Based Controller Design for an Electromagnetic Suspension System,”IEEE Transactions on Education, Vol. 41, No. 2, pp. 116-129, 1998.
    [9] W. G. Hurley, M. Hynes, and W. H. Wolfle,“PWM Control of a Magnetic Suspension System,”IEEE Transactions on Education, Vol. 47, No. 2, pp. 165-173, 2004.
    [10] V. A.Oliveira, E. F. Costa, and J. B. Vargas,“Digital Implementation of a Magnetic Suspension System,”IEEE Transactions on Education, Vol. 42, No.4, pp. 315-322, 1999.
    [11] T. H. Wong,“Design of a Magnetic Levitation Control System-An Undergraduate Project,”IEEE Transactions on Education, Vol. 29, No.4, pp. 196-200, 1986.
    [12] Z. J. Yang,“Robust Position Control of Magnetic Levitation System Via Dynamic Surface Control Technique,”IEEE Transactions on Education, Vol. 51, No. 1, pp. 26-32, 2004.
    [13] 涂文超,「磁浮系統之製作分析與強健控制器之設計」,國立成功大學工程科學系碩士論文,民國八十五年。
    [14] 蔡文欽,「自動送定位磁浮控制系統之研製」,崑山科技大學電機工程學系碩士論文,民國九十五年。
    [15] 徐啟耀,「磁浮定位控制系統之研究」,國立中央大學電機工程學系碩士論文,民國九十二年。
    [16] 蔡尚育,「磁浮定位系統之最佳定位控制器設計」,國立東華大學電機工程學系碩士論文,民國九十五年。
    [17] S. Joo and J. H. Seo,“Design and Analysis of the Nonlinear Feedback Linearizing Control for an Electromagnetic Suspension System,”IEEE Transactions on Control Systems Technology, Vol. 5, No 1, pp. 135-144, 1997
    [18] D. Cho, Y. Kato, and D. Spilman,“Sliding Mode and Classical Control Magnetic Levitations Systems,”IEEE Control Systems Mag, Vol. 13, pp. 42-48, 1993.
    [19] J. H. Lee, P. E. Allaire, G. Tao, and X. Zhang,“Integral Sliding Mode Control of a Magnetically Suspended Balance Beam: Analysis, Simulalation, and Experiment,”IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 3, pp. 338-346, 2001.
    [20] J. Y. Hung,“Magnetic Bearing Control Using Fuzzy Logic,”IEEE Transactions on Industry Applications, Vol. 31, No. 6, pp. 1492-1497, 1995.
    [21] P. S. Shiakolas, D. Piyabongkarn, I. Frangeskou, and S. R. Van Schenck,“Magnetic Levitation Hardware-in-the-Loop and MATLAB-Based Experiments for Reinforcement of Neural Network Control Concepts,”IEEE Transactions on Education, Vol. 47, No. 1, pp. 33-41, 2004.
    [22] Z. J. Yang and M. Tateishi,“Adaptive Robust Nonlinear Control of a Magnetic Levitation System,”Automatica, Vol. 37, pp. 1125-1131, 2001.
    [23] 盧明智、盧鵬任,「感測器應用與線路分析」,全華圖書,台北,1996。
    [24] M. A. Aizerman and F. R. Gantmarkher, On Some Features of Switchings in Nonlinear Control with a Piecewise-Smooth Response of the Nonlinear Element, Avtomatika i Telemekhanika, 18, 11, 1957.
    [25] V. I. Utkin, “Variable Structure Systems with Sliding Mode,’’ IEEE Transactions on Automatic Control, Vol. 39, pp. 1466-1470, 1977.
    [26] K. S. Yeung and Y. P. Chen, “A New Controller Design for Manipulators Using the Theory of Variable Structure Systems,” IEEE Transactions on Automatic Control, Vol. 33, pp. 200-206, 1988.
    [27] J. L. Chern and Y. C. Wu, “Design of Integral Variable Structure Controller and Application to Electro Hydraulic Velocity Servo System,” IEE Proceedings D, Vol. 138, pp. 439-444, 1991.
    [28] M. N. Ahmad and J. S. Osman, “Proportional-Integral Sliding Mode Tracking Controller with Application to a Robot Manipulator,” Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision, pp. 863-868, Singapore, 2002.
    [29] J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, 1991.
    [30] R. K. H. , T. Yoneyama, F. M. U. Araujo, and R. G. Machado,“A Simple Technique for Identifying a Linearized Model for a Didactic Magnetic Levitation System,”IEEE Transactions on Education, Vol. 46, No. 1, pp.22-25, 2003.
    [31] TMS320F281X Digital Signal Processors Data Manual, Texas Instruments, 2001.
    [32] G. F. Franklin, J. D. Powell, and A. Emami-Nasini, Feedback Control of Dynamic Systems, 4thEd., Prentice Hall, Upper Saddle River, NJ, 2002.
    [33] 陳永平,張浚林,「可變結構控制設計」,全華科技圖書有限公司,民國九十一年。
    [34] 呂育勝,「利用順滑模態之球與弧系統的平衡控制」,國立成功大學工程科學系碩士論文,民國九十七年。

    下載圖示 校內:2013-08-20公開
    校外:2013-08-20公開
    QR CODE