簡易檢索 / 詳目顯示

研究生: 張鈺萱
Chang, Yu-Hsuan
論文名稱: CCN1在胚胎發育初期之表現及其在調節細胞死亡之角色
CCN1 Expression in Early Embryogenesis and Its Role in Cell Death Regulation
指導教授: 莫凡毅
Mo, Fan-E
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 75
中文關鍵詞: CCN1CCN2胞外間質血管生成心室心房中隔缺失心血管系統胚胎FasL/Fas協同作用ROS細胞凋亡
外文關鍵詞: CCN1, CCN2, extracellular matrix, vascularization, atrioventricular septal defects, cardiovascular system, embryo, FasL/Fas, synergistic effect, ROS, apoptosis
相關次數: 點閱:110下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CCN1是CCN家族六個成員之ㄧ,為分泌型的胞外間質蛋白,可藉由和不同的integrin接受器結合來調控細胞的附著、移動、增生、存活和分化。從小鼠胚胎天數第9.5天到出生前,可以偵測到CCN1 RNA被大量表現。利用標定基因的研究方法,可證明CCN1對於心血管系統發育極為重要。缺乏CCN1的胚胎會因為胎盤血管生成不全及血管構造的不健全造成胚胎死亡,而CCN1半量短少的小鼠會有心室心房中隔缺失的現象,與人類的心室心房中隔缺損的疾病相似。CCN1在胚胎後期的功能已有許多研究報導,然而,但對於早期胚胎發育,CCN1的表現如何目前尚未清楚。此外,在我們先前的結果發現,會有部份的胚胎體(Embryoid body)分化成跳動的心肌細胞且同時表現CCN1;當給予胚胎體純化的CCN1蛋白時,會有較高比例的胚胎體分化成跳動的心肌細胞。胚胎體是模擬早期的胚胎形成且表現CCN1,因此,想透過早期的胚胎發育去觀察CCN1的表現位置。所利用的CCN1+/-動物模式是將LacZ基因是先置入動物本身的CCN1基因前面,如此ㄧ來,當CCN1蛋白被表現時,可以利用X-gal染色法觀察到CCN1所表現的位置。透過CCN1+/-動物模式發現,CCN1最早於胚胎天數第7.5天開始表現於胚胎,主要表現於中胚層的發育,包括早期的心血管系統以及脊索,另外,圍成憩室的內胚層細胞也有表現CCN1,而胚外組織則可追朔至胚胎天數第6.5天。綜合所有觀察,在胚胎本身,CCN1最早在心臟開始的雛形即有表現,且此時期的心肌細胞尚未跳動,代表CCN1對於幹細胞發育成心肌細胞的過程可能扮演關鍵角色。
    CCN1在成體幾乎不表現,然而當心臟受損後,CCN1會被大量表現,此外,FasL在過去的研究中證實會促使心肌細胞凋亡,因此,利用大鼠心肌H9c2細胞株當做實驗對象,進一步觀察心肌細胞凋亡路徑中,CCN1和FasL之間的關係。利用偵測活性氧分子(ROS)的試劑─DC-FDA,證實活性氧分子參與CCN1誘導心肌細胞凋亡的路徑中。此外,我們發現CCN1和FasL造成H9c2細胞凋亡具有協同作用,進一步證實,此協同作用現象不是透過增加細胞膜上的Fas量。我們的結果證實,CCN1和FasL會誘使H9c2協同的細胞凋亡現象發生,但其中的作用的機制需要更進一步去研究。

    CCN1, a member of the CCN family, is an extracellular matrix-associated protein. The functions of CCN1 include cell adhesion, migration, proliferation, survival, and differentiation through binding to different integrin receptors. CCN1 RNA is highly expressed from embryonic day (E) 9.5 and declines after birth. CCN1 plays an important role in developing cardiovascular system, demonstrated by gene-targeting studies. CCN1-null mice suffered embryonic lethality due to insufficient placental vascularization and compromised vessel integrity. In addition, CCN1-deficient embryos display atrioventricular septal defects, reminiscent of AVSD in humans. The functions of CCN1 in late embryogenesis have been reported, but CCN1 expression is still not clear in early developing embryo. Furthermore, in in vitro embryoid body (EB) culture, CCN1 expression was specifically associated with differentiated beating cardiomyocytes, and greater proportion of EB cells differentiated into cardiomyocytes upon treatment with purified CCN1 protein. EB mimicked early embryonic forming and expressed CCN1, hence the CCN1 local expression could be fined through early embryogenesis. A lacZ gene was previously placed under the control of the endogenous CCN1 promoter in the Ccn1+/- mice. Hence, CCN1 expression in embryos can be reflected by the X-gal staining. CCN1 started to express as early as E7.5 in embryos. CCN1 expression was mainly in developing mesoderm, including cardiovascular system and notochord. CCN1 also displayed in embryonic endoderm forming foregut and hindgut. CCN1 in extraembryonic part could go back at E6.5. In conclusion, CCN1was firstly expressed when cardiac crescent just formed. The cardiomyocytes do not beat this stage, meaning that CCN1 may play a key role for stem cells differentiating to cardiomyocytes.
    CCN1 expression subsides in adult, but the expression of CCN1 increases after heart injury. FasL has been shown to induce cardiomyocytes apoptosis. Using rat H9c2 cardiomyoblast cells, we further examined ant possible interaction between CCN1and FasL in cardiomycytes apoptosis. In our study, we proved that ROS (reactive oxygen species) was involved in CCN1-induced cardiomyocytes apoptosis by using DCF-DA ROS detection reagent. Besides, we found that CCN1 can synergize with FasL to induce H9c2 cells apoptosis. Furthermore, we showed that the synergistic effect of CCN1 and FasL cotreatment was not due to increased expression of Fas on cell membrane. However, the mechanism of CCN1 and FasL synergistic effect needs to be further examined. In conclusion, we proved that CCN1 synergized with FasL to induce apoptosis in H9c2 cells.

    摘要…………………………………………………………………………………………i Abstract……………………………………………………………………………………iii 致謝…………………………………………………………………………………………v 目錄………………………………………………………………………………………vi 圖表目錄…………………………………………………………………………………ix 縮寫表………………………………………………………………………………………x 第一章 前言………………………………………………………………………………1 1-1 早期胚胎發育………………………………………………………………………1 1-1-1 授精卵著床(implantation)前…………………………………………………1 1-1-2 授精卵著床後與胚胎外組織發育……………………………………………1 1-1-3 胚胎之三胚層的分化(gastrulation) …………………………………………3 1-1-4 心血管發育……………………………………………………………………4 1-1-5 神經發育………………………………………………………………………7 1-1-6 骨頭發育………………………………………………………………………7 1-2 CCN1蛋白…………………………………………………………………………8 1-2-1 CCN家族的結構………………………………………………………………8 1-2-2 CCN1蛋白的發現……………………………………………………………10 1-2-3 CCN1蛋白在胚胎時期的生物活性…………………………………………10 1-2-4 CCN1蛋白在成體時期的生物活性…………………………………………11 1-3 細胞凋亡…………………………………………………………………………11 1-4 Fas/FasL……………………………………………………………………………13 1-5 主要研究目的……………………………………………………………………14 第二章 材料與方法……………………………………………………………………16 2-1 溶液配方…………………………………………………………………………16 2-2 其他藥品和材料…………………………………………………………………18 2-3 儀器設備…………………………………………………………………………19 2-4 實驗步驟…………………………………………………………………………20 2-4-1 動物…………………………………………………………………………20 2-4-1-1 動物來源…………………………………………………………………20 2-4-1-2 動物大量繁殖……………………………………………………………20 2-4-1-3 萃取小鼠DNA…………………………………………………………20 2-4-1-4聚合酶鏈鎖反應…………………………………………………………21 2-4-1-5瓊脂膠體電泳……………………………………………………………22 2-4-2 胚胎…………………………………………………………………………22 2-4-2-1 X-gal染色………………………………………………………………22 2-4-2-2 胚胎包埋和切片…………………………………………………………23 2-4-3 組織作背景染色……………………………………………………………24 2-4-4 細胞…………………………………………………………………………24 2-4-4-1細胞株來源與培養………………………………………………………24 2-4-4-2細胞繼代…………………………………………………………………24 2-4-4-3 ROS產量測試……………………………………………………………25 2-4-4-4 CCN1與FasL引起H9c2進行細胞凋亡以及NAC實驗………………25 2-4-4-5流式細胞儀偵測細胞表面的Fas量……………………………………26 第三章 結果……………………………………………………………………………28 3-1 CCN1蛋白缺失不影響早期的胚胎發育………………………………………28 3-2 CCN1表現於早期的心血管系統………………………………………………28 3-2-1胎胎天數第8.5時,CCN1表現於心血管系統……………………………28 3-2-2胎胎天數第7.5時,CCN1表現於心血管系統……………………………30 3-3 CCN1表現於脊索………………………………………………………………30 3-4 CCN1間接影響骨頭發育………………………………………………………30 3-4-1在胚胎天數第8.5天發現CCN1與骨頭發育無直接相關………………30 3-4-2 CCN1在胚胎天數第7.5天開始表現於早期頭部間質組織………………31 3-5 CCN1可能參與早期神經發育…………………………………………………31 3-6 CCN1在早期胚胎的其他發現…………………………………………………32 3-7 CCN1影響外胚胎的發育………………………………………………………32 3-7-1 胚胎天數第8.5天觀察到CCN1存在尿囊………………………………32 3-7-2 CCN1在胚胎天數第7.5天時,開始表現於胎盤系統的發育……………32 3-7-3 胚胎天數第6.5天以前,CCN1只表現於外胚胎組織…………………33 3-8 CCN1使H9c2產生ROS………………………………………………………33 3-9 CCN1和FasL造成H9c2的細胞凋亡具有協同現象…………………………34 3-10 FasL造成H9c2對於CCN1敏感不是透過Fas的增加………………………35 第四章 討論……………………………………………………………………………37 4-1 早期胚胎發育…………………………………………………………………37 4-2 H9c2細胞實驗…………………………………………………………………40 第五章 結論……………………………………………………………………………43 第六章 參考文獻………………………………………………………………………44 第七章 附錄……………………………………………………………………………56 第八章 圖表……………………………………………………………………………58

    Abreu, J. G., N. I. Ketpura, et al. (2002). "Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta." Nat Cell Biol 4(8): 599-604.
    Arnold, S. J. and E. J. Robertson (2009). "Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo." Nat Rev Mol Cell Biol 10(2): 91-103.
    Athanasopoulos, A. N., D. Schneider, et al. (2007). "Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing." J Biol Chem 282(37): 26746-26753.
    Bai, T., C. C. Chen, et al. (2010). "Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages." J Immunol 184(6): 3223-3232.
    Boise, L. H. and C. B. Thompson (1997). "Bcl-x(L) can inhibit apoptosis in cells that have undergone Fas-induced protease activation." Proc Natl Acad Sci U S A 94(8): 3759-3764.
    Bradham, D. M., A. Igarashi, et al. (1991). "Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10." J Cell Biol 114(6): 1285-1294.
    Brent, A. E. and C. J. Tabin (2002). "Developmental regulation of somite derivatives: muscle, cartilage and tendon." Curr Opin Genet Dev 12(5): 548-557.
    Brigstock, D. R., R. Goldschmeding, et al. (2003). "Proposal for a unified CCN nomenclature." Mol Pathol 56(2): 127-128.
    Bruneau, B. G. (2008). "The developmental genetics of congenital heart disease." Nature 451(7181): 943-948.
    Chamberlain, C. E., J. Jeong, et al. (2008). "Notochord-derived Shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning." Development 135(6): 1097-106.
    Chang, D. W., D. Ditsworth, et al. (2003). "Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases." Journal of Biological Chemistry 278(19): 16466-16469.
    Chen, C.-C., J. L. Young, et al. (2007). "Cytotoxicity of TNF alpha is regulated by integrin-mediated matrix signaling." EMBO (European Molecular Biology Organization) Journal 26(5): 1257-1267.
    Chen, C. C. and L. F. Lau (2009). "Functions and mechanisms of action of CCN matricellular proteins." Int J Biochem Cell Biol 41(4): 771-783.
    Chen, C. C. and L. F. Lau (2008). "Functions and mechanisms of action of CCN matricellular proteins." Int J Biochem Cell Biol 41(4): 771-783.
    Chen, C. C., F. E. Mo, et al. (2001). "The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts." J Biol Chem 276(50): 47329-47337.
    Chen, H., M. E. Herndon, et al. (2000). "The cell biology of thrombospondin-1." Matrix Biol 19(7): 597-614.
    Chen, N., C. C. Chen, et al. (2000). "Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans." J Biol Chem 275(32): 24953-24961.
    Christ, B., R. Huang, et al. (2007). "Amniote somite derivatives." Dev Dyn 236(9): 2382-96.
    Christoffels, V. M., G. J. Smits, et al. (2010). "Development of the pacemaker tissues of the heart." Circ Res 106(2): 240-254.
    Chuva de Sousa Lopes, S. M., A. Feijen, et al. (2004). "Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction." Dev Dyn 231(3): 542-550.
    Cleaver, O. and P. A. Krieg (2001). "Notochord patterning of the endoderm." Dev Biol 234(1): 1-12.
    Cockburn, K. and J. Rossant (2010). "Making the blastocyst: lessons from the mouse." J Clin Invest 120(4): 995-1003.
    Crockett, J. C., N. Schutze, et al. (2007). "The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of alphavbeta3 and alphavbeta5." Endocrinology 148(12): 5761-5768.
    Cross, J. C. (2005). "IFPA 2004 Award In Placentology Lecture - How to make a placenta: Mechanisms of trophoblast cell differentiation in mice - A review." Placenta 26: S3-S9.
    D'Antonio, K. B., A. Toubaji, et al. (2010). "Extracellular matrix associated protein CYR61 is linked to prostate cancer development." J Urol 183(4): 1604-1610.
    Datta, R., E. Oki, et al. (2000). "XIAP regulates DNA damage-induced apoptosis downstream of caspase-9 cleavage." J Biol Chem 275(41): 31733-31738.
    de Bruijn, M. F., N. A. Speck, et al. (2000). "Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo." EMBO J 19(11): 2465-2474.
    de Oliveira, G. M., R. L. Diniz, et al. (2007). "Fas ligand-dependent inflammatory regulation in acute myocarditis induced by Trypanosoma cruzi infection." Am J Pathol 171(1): 79-86.
    Deveraux, Q. L., R. Takahashi, et al. (1997). "X-linked IAP is a direct inhibitor of cell-death proteases." Nature (London) 388(6639): 300-304.
    Dobreva, M. P., P. N. Pereira, et al. (2010). "On the origin of amniotic stem cells: of mice and men." Int J Dev Biol 54(5): 761-777.
    Downs, K. M. (2002). "Early placental ontogeny in the mouse." Placenta 23(2-3): 116-31.
    Ekshyyan, O. and T. Y. Aw (2004). "Apoptosis: a key in neurodegenerative disorders." Curr Neurovasc Res 1(4): 355-371.
    El-Ani, D. and R. Zimlichman (2003). "TNFalpha stimulated ATP-sensitive potassium channels and attenuated deoxyglucose and Ca uptake of H9c2 cardiomyocytes." Ann N Y Acad Sci 1010: 716-720.
    El-Hashash, A. H., P. Esbrit, et al. (2005). "PTHrP promotes murine secondary trophoblast giant cell differentiation through induction of endocycle, upregulation of giant-cell-promoting transcription factors and suppression of other trophoblast cell types." Differentiation 73(4): 154-174.
    El-Hashash, A. H., D. Warburton, et al. (2010). "Genes and signals regulating murine trophoblast cell development." Mech Dev 127(1-2): 1-20.
    Elmore, S. (2007). "Apoptosis: a review of programmed cell death." Toxicol Pathol 35(4): 495-516.
    Franzen, C. A., C. C. Chen, et al. (2009). "Matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis." Mol Cancer Res 7(7): 1045-1055.
    Futaki, S., Y. Hayashi, et al. (2004). "Sox7 plays crucial roles in parietal endoderm differentiation in F9 embryonal carcinoma cells through regulating Gata-4 and Gata-6 expression." Mol Cell Biol 24(23): 10492-10503.
    Gammill, L. S. and M. Bronner-Fraser (2003). "Neural crest specification: migrating into genomics." Nat Rev Neurosci 4(10): 795-805.
    Garry, D. J. and E. N. Olson (2006). "A common progenitor at the heart of development."
    Cell 127(6): 1101-1104.
    Gellhaus, A., M. Schmidt, et al. (2006). "Decreased expression of the angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated with pre-eclampsia." Mol Hum Reprod 12(6): 389-399.
    Green, D. R. and T. A. Ferguson (2001). "The role of Fas ligand in immune privilege." Nat Rev Mol Cell Biol 2(12): 917-924.
    Grote, K., G. Salguero, et al. (2007). "The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration." Blood 110(3): 877-885.
    Harvey, R. P. (2002). "Patterning the vertebrate heart." Nat Rev Genet 3(7): 544-556.
    Hilfiker-Kleiner, D., K. Kaminski, et al. (2004). "Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation." Circulation 109(18): 2227-2233.
    Hilfiker-Klemer, D., U. Landmesser, et al. (2006). "Molecular mechanisms in heart failure - Focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis." Journal of the American College of Cardiology 48(9, Suppl. A): A56-A66.
    Hiruma, T., Y. Nakajima, et al. (2002). "Development of pharyngeal arch arteries in early mouse embryo." J Anat 201(1): 15-29.
    Hitz, C., D. Vogt-Weisenhorn, et al. (2005). "Progressive loss of the spongiotrophoblast layer of Birc6/Bruce mutants results in embryonic lethality." Genesis 42(2): 91-103.
    Hoffmann, A. D., M. A. Peterson, et al. (2009). "sonic hedgehog is required in pulmonary endoderm for atrial septation." Development (Cambridge) 136(10): 1761-1770.
    Holbourn, K. P., K. R. Acharya, et al. (2008). "The CCN family of proteins: structure-function relationships." Trends Biochem Sci 33(10): 461-473.
    Inman, K. E. and K. M. Downs (2007). "The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus." Genesis 45(5): 237-258.
    Ivkovic, S., B. S. Yoon, et al. (2003). "Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development." Development 130(12): 2779-2791.
    Jay, P., J. L. Berge-Lefranc, et al. (1997). "The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p." Oncogene 14(14): 1753-1757.
    Joliot, V., C. Martinerie, et al. (1992). "Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas." Mol Cell Biol 12(1): 10-21.
    Jones, J. I. and D. R. Clemmons (1995). "Insulin-like growth factors and their binding proteins: Biological actions." Endocrine Reviews 16(1): 3-34.
    Jost, P. J., S. Grabow, et al. (2009). "XIAP discriminates between type I and type II FAS-induced apoptosis." Nature (London) 460(7258): 1035.
    Jun, J. I. and L. F. Lau (2010). "The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing." Nat Cell Biol 12(7): 676-685.
    Juric, V., C. C. Chen, et al. (2009). "Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo." Mol Cell Biol 29(12): 3266-3279.
    Kania, G., P. Blyszczuk, et al. (2009). "Mechanisms of cardiac fibrosis in inflammatory heart disease." Trends Cardiovasc Med 19(8): 247-252.
    Kappen, C., A. Neubuser, et al. (2007). "Molecular basis for skeletal variation: insights from developmental genetic studies in mice." Birth Defects Res B Dev Reprod
    Toxicol 80(6): 425-50.
    Karin, M. (2008). "The IkappaB kinase - a bridge between inflammation and cancer." Cell Res 18(3): 334-342.
    Kawahara, A., T. Kobayashi, et al. (1998). "Inhibition of Fas-induced apoptosis by Bcl-2." Oncogene 17(20): 2549-2554.
    Kawaki, H., S. Kubota, et al. (2008). "Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage." J Bone Miner Res 23(11): 1751-1764.
    Kerr, J. F., A. H. Wyllie, et al. (1972). "Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics." Br J Cancer 26(4): 239-257.
    Knecht, A. K. and M. Bronner-Fraser (2002). "Induction of the neural crest: a multigene process." Nat Rev Genet 3(6): 453-461.
    Koon, H. W., D. Zhao, et al. (2008). "Substance P-mediated expression of the pro-angiogenic factor CCN1 modulates the course of colitis." Am J Pathol 173(2): 400-410.
    Kuijper, S., C. J. Turner, et al. (2007). "Regulation of angiogenesis by Eph-ephrin interactions." Trends Cardiovasc Med 17(5): 145-151.
    Kurosaka, K., M. Takahashi, et al. (2003). "Silent cleanup of very early apoptotic cells by macrophages." J Immunol 171(9): 4672-4679.
    Lau, L. F. and D. Nathans (1987). "Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc." Proc Natl Acad Sci U S A 84(5): 1182-1186.
    Lau, L. F. and S. C. Lam (1999). "The CCN family of angiogenic regulators: the integrin connection." Exp Cell Res 248(1): 44-57.
    Leu, S. J., S. C. Lam, et al. (2002). "Pro-angiogenic activities of CYR61 (CCN1) mediated
    through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells." J Biol Chem 277(48): 46248-46255.
    Liu, Y., M. Asakura, et al. (2007). "Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells." Proc Natl Acad Sci U S A 104(10): 3859-3864.
    Mahoney, J. A. and A. Rosen (2005). "Apoptosis and autoimmunity." Curr Opin Immunol 17(6): 583-588.
    Mahtab, E. A. F., R. Vicente-Steijn, et al. (2009). "Podoplanin Deficient Mice Show a RhoA-Related Hypoplasia of the Sinus Venosus Myocardium Including the Sinoatrial Node." Developmental Dynamics 238(1): 183-193.
    Marti, E. and P. Bovolenta (2002). "Sonic hedgehog in CNS development: one signal, multiple outputs." Trends Neurosci 25(2): 89-96.
    Matteson, A. (2008). "An enzyme kinetic model of blood island formation." Math Med Biol 25(3): 233-45.
    Mo, F. E. and L. F. Lau (2006). "The matricellular protein CCN1 is essential for cardiac development." Circ Res 99(9): 961-969.
    Mo, F. E., A. G. Muntean, et al. (2002). "CYR61 (CCN1) is essential for placental development and vascular integrity." Mol Cell Biol 22(24): 8709-8720.
    Nakayama, N., C. E. Han, et al. (2001). "A novel chordin-like protein inhibitor for bone morphogenetic proteins expressed preferentially in mesenchymal cell lineages." Dev Biol 232(2): 372-387.
    Nishida, T., K. Emura, et al. (2010). "CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes osteoclastogenesis via induction of and interaction with dendritic cell-specific transmembrane protein (DC-STAMP)." J Bone Miner Res.
    O'Brien, T. P. and L. F. Lau (1992). "Expression of the growth factor-inducible immediate
    early gene cyr61 correlates with chondrogenesis during mouse embryonic development." Cell Growth Differ 3(9): 645-654.
    O'Brien, T. P., G. P. Yang, et al. (1990). "Expression of cyr61, a growth factor-inducible immediate-early gene." Mol Cell Biol 10(7): 3569-3577.
    O'Kelly, J., A. Chung, et al. (2008). "Functional domains of CCN1 (Cyr61) regulate breast cancer progression." Int J Oncol 33(1): 59-67.
    Palis, J. and M. C. Yoder (2001). "Yolk-sac hematopoiesis: the first blood cells of mouse and man." Exp Hematol 29(8): 927-936.
    Pennica, D., T. A. Swanson, et al. (1998). "WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors." Proc Natl Acad Sci U S A 95(25): 14717-14722.
    Qi, B. Q. and S. W. Beasley (1999). "Relationship of the notochord to foregut development in the fetal rat model of esophageal atresia." J Pediatr Surg 34(11): 1593-1598.
    Resende, T. P., M. Ferreira, et al. (2010). "Sonic hedgehog in temporal control of somite formation." Proc Natl Acad Sci U S A 107(29): 12907-12912.
    Rossant, J. and J. C. Cross (2001). "Placental development: lessons from mouse mutants." Nat Rev Genet 2(7): 538-548.
    Saraste, A. and K. Pulkki (2000). "Morphologic and biochemical hallmarks of apoptosis." Cardiovasc Res 45(3): 528-537.
    Savolainen, S. M., J. F. Foley, et al. (2009). "Histology atlas of the developing mouse heart with emphasis on E11.5 to E18.5." Toxicol Pathol 37(4): 395-414.
    Schier, A. F. (2004). "Developmental biology: tail of decay." Nature 427(6973): 403-404.
    Schlunegger, M. P. and M. G. Grutter (1993). "Refined crystal structure of human transforming growth factor beta 2 at 1.95 A resolution." J Mol Biol 231(2):
    445-458.
    Schulze-Bergkamen, H., A. Weinmann, et al. (2009). "Novel ways to sensitise gastrointestinal cancer to apoptosis." Gut 58(7): 1010-1024.
    Si, W., Q. Kang, et al. (2006). "CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells." Mol Cell Biol 26(8): 2955-2964.
    Simon, H. U., A. Haj-Yehia, et al. (2000). "Role of reactive oxygen species (ROS) in apoptosis induction." Apoptosis 5(5): 415-418.
    Stankunas, K., C. T. Hang, et al. (2008). "Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis." Dev Cell 14(2): 298-311.
    Stephanou, A., T. M. Scarabelli, et al. (2001). "Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701." J Biol Chem 276(30): 28340-28347.
    Surveyor, G. A., A. K. Wilson, et al. (1998). "Localization of connective tissue growth factor during the period of embryo implantation in the mouse." Biol Reprod 59(5): 1207-1213.
    Tam, P. P. and D. A. Loebel (2007). "Gene function in mouse embryogenesis: get set for gastrulation." Nat Rev Genet 8(5): 368-381.
    Tanaka, M., T. Suda, et al. (1995). "Expression of the functional soluble form of human fas ligand in activated lymphocytes." EMBO J 14(6): 1129-1135.
    Tanaka, S., T. Kunath, et al. (1998). "Promotion of trophoblast stem cell proliferation by FGF4." Science 282(5396): 2072-2075.
    Todorovicc, V., C. C. Chen, et al. (2005). "The matrix protein CCN1 (CYR61) induces
    apoptosis in fibroblasts." J Cell Biol 171(3): 559-568.
    Ueno, S., G. Weidinger, et al. (2007). "Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells." Proc Natl Acad Sci U S A 104(23): 9685-9690.
    Uy, G. D., K. M. Downs, et al. (2002). "Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse." Development 129(16): 3913-3924.
    Vermeulen, K., D. R. Van Bockstaele, et al. (2005). "Apoptosis: mechanisms and relevance in cancer." Ann Hematol 84(10): 627-639.
    von Both, I., C. Silvestri, et al. (2004). "Foxh1 is essential for development of the anterior heart field." Dev Cell 7(3): 331-345.
    Wei, M. C., W.-X. Zong, et al. (2001). "Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death." Science (Washington D C) 292(5517): 727-730.
    White, P. H., D. R. Farkas, et al. (2005). "Regulation of Tbx6 expression by Notch signaling." Genesis 42(2): 61-70.
    Wong, M., M. L. Kireeva, et al. (1997). "Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells." Dev Biol 192(2): 492-508.
    Wu, M. H., H. C. Chen, et al. (2010). "Prevalence of congenital heart disease at live birth in Taiwan." J Pediatr 156(5): 782-785.
    Xu, G. and Y. Shi (2007). "Apoptosis signaling pathways and lymphocyte homeostasis." Cell Res 17(9): 759-771.
    Xu, Q. and D. Wilkinson (2010). "New molecular connections in angiogenesis." Cell Res 20(9): 980-981.
    Yamagishi, C., H. Yamagishi, et al. (2006). "Sonic hedgehog is essential for first pharyngeal arch development." Pediatric Research 59(3): 349-354.
    Yamaoka, M., S. Yamaguchi, et al. (2000). "Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas-mediated apoptosis with doxorubicin." J Mol Cell Cardiol 32(6): 881-889.
    Yang, G. P. and L. F. Lau (1991). "Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface." Cell Growth Differ 2(7): 351-357.
    Yu, Y., Y. Gao, et al. (2008). "The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells." Exp Cell Res 314(17): 3198-3208.
    Yu, Y., Y. Gao, et al. (2010). "CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury." Basic Res Cardiol 105(6): 713-724.
    Zaffran, S. and M. Frasch (2002). "Early signals in cardiac development." Circ Res 91(6): 457-469.Anderson, R. H., S. Webb, et al. (2003). "Development of the heart: (2) Septation of the atriums and ventricles." Heart 89(8): 949-958.
    Zhang, H. and A. Bradley (1996). "Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development." Development 122(10): 2977-2986.
    Zhou, W., L. Lin, et al. (2007). "Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFbeta2." Nat Genet 39(10): 1225-1234.

    下載圖示 校內:2016-01-20公開
    校外:2016-01-20公開
    QR CODE