| 研究生: |
李仕宇 Li, Shi-Yu |
|---|---|
| 論文名稱: |
應用微分值積法於圓錐薄殼之振動分析 Vibration Analysis of Conical Shells by the Differential Quadrature Method |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 圓錐薄殼 、微分值積法 |
| 外文關鍵詞: | DQM, conical shell |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出以微分值積法(Differential Quadrature Method)來分析圓錐薄殼的自然振動行為。本論文採用Love的薄殼理論,以微分值積法的轉化規則將圓錐薄殼的偏微分運動方程式轉換成代數方程,再加上自然座標轉換的結果,將原始的微分權值矩陣轉換成新的一組權值矩陣,以分析圓錐薄殼的自然振動頻率。本研究的結果收歛性很好,且與文獻的結果比較差距皆相當小,驗證了使用新的權值矩陣於微分值積法來分析圓錐薄殼結構的準確性。文中針對開放式與封閉式圓錐薄殼在不同邊界條件以及不同半頂點角、不同圓錐切割比例對自然頻率的影響做數值比較與探討,結果顯示微分值積法於圓錐薄殼的自然振動分析非常方便及快速,並且具有良好的準確性。
In this thesis, the free vibration behavior of truncated conical shells based on the Love’s thin shell theory is investigated by using the differential quadrature method (DQM). By using the DQM, the equations of motion of free vibration of conical shells in the differential form are reduced into algebraic equations. A new weighting matrix is obtained through natural coordinate transformation. To evaluate the accuracy of the new weighting matrix used in DQM, numerical results obtained by the DQM are compared with those in the literature. Furthermore, effects of the semi-vertex angle and the ratio of truncation on the natural frequency of truncated conical shells are studied. Numerical results show the superb accuracy, efficiency, and convenience of the DQM.
1.R. E. Bellman and J. Casti 1971 Journal of Mathematical Analysis and
Application 34, 235-238. “Differential quadrature and long-term
integration”.
2.C. H. Chang 1981 The Shock and Vibration Digest 13, 9-17. “Vibration of
conical shells”.
3.T. Irie, G. Yamada and Y. Kaneko 1984 Journal of Sound and Vibration 92, 447-
453. “Natural frequencies of truncated conical shells”.
4.L. Tong 1993 International Journal of Engineering Science 31, 719-733.
“Free vibration of orthotropic conical shells”.
5.L. Tong 1993 International Journal of Mechanical Sciences 35, 47-61. “Free
vibration of composite laminated conical shells”.
6.C. Shu 1996 International Journal of Mechanical Sciences 38, 935-949. “An
efficient approach for free vibration analysis of conical shells”.
7.Y. L. Wang, R. H. Liu and X. W. Wang 1999 Journal of Sound and Vibration
224, 387-394. “Free vibration analysis of truncated conical shells by the
differential quadrature method”.
8.J. N. Rossetos and R. F. Parisse 1969 ASME Journal of Applied Mechanics 36,
271-276. “The dynamic response of cylindrical and conical panels”.
9.D. G. Ashwell and R. Gallagher 1976 Finite Element for Thin Shell and Curve
Members. New York: John Wiley.
10.D. Teichmann 1985 AIAA Journal 23, 1634-1637. “An approximation of the
lowest eigenfrequencies and buckling loads of cylindrical and conical shell
panels under initial stress”.
11.R. S. Srinivasan and P. A. Krishnan 1987 Journal of Sound and Vibration
117, 153-160. “Free vibration of conical shell panels”.
12.Y. K. Cheung, W. Y. Li and L. G. Tham 1989 Journal of Sound and Vibration
128, 411-422. “Free vibration analysis of singly curved shell by spline
finite strip method”.
13.K. M. Liew and M. K. Lim 1995 Engineering Structures 17, 63-70. “Vibratory
behaviour of shallow conical shells by a global Ritz formulation”.
14.C. W. Lim and K. M. Liew 1995 International Journal of Solids and
Structures 33, 451-468. “Vibration of shallow conical shells with shear
flexibility: a first order theory”.
15.C. W. Lim and S. Kitipornchai 1999 Journal of Sound and Vibration 219, 813-
835. “Effects of subtended and vertex angles on the free vibration of open
conical shell panels: A conical coordinate approach”.
16.N. S. Bardell, J. M. Dunsdon and R. S. Langley 1998 Journal of Sound and
Vibration 217, 297-320. “Free vibration of thin, isotropic, open conical
panels”.
17.F. Civan and C. M. Sliepcevich 1984 Journal of Mathematical Analysis and
Application 101, 423-443. “Differential quadrature for multi- dimensional
problems”.
18.C. W. Bert, S. K. Jang and A. G. Striz 1988 AIAA Journal, 26, 612-618.
“Two new approximate methods for analyzing free vibration of structural
components”.
19.C. Shu and B. E. Richards 1992 International Journal of Numerical Methods
for Fluids, 15, 791-798. “Application of generalized differential
quadrature to solve two-dimensional incompressible Navier-Stokes
equations”.
20.X. Wang and C. W. Bert 1993 Journal of Sound and Vibration, 162, 566-572.
“A new approach in applying differential quadrature to static and free
vibrational analyses of beams and plates”.
21.C. W. Bert and M. Malik 1996 ASME Applied Mechanics Review, 49, 1-28.
“Differential quadrature method in computational mechanics: A review”.
22.S.-T. Choi and Y.-T. Chou 2001 Journal of Sound and Vibration, 240, 937-
953. “Vibration analysis of elastically supported turbomachinery blades by
the modified differential quadrature method”.
23.周玉端,民國八十九年六月,國立成功大學博士論文,台南市,改良型微分值積法及其
元素法於結構力學之應用。
24.Y.-T. Chou and S.-T. Choi 2000 The Chinese Journal of Mechanics, 16, 189-
195. “Vibration and buckling analyses of beams by the modified
differential quadrature method”.
25.S.-T. Choi, Y.-T. Chou and C.-J. Huang 2002 Journal of the Chinese Society
of Mechanical Engineers, 23, 1-9. “Buckling and vibration analyses of
rectangular plates by the differential quadrature method”.
26.K. Y. Lam, H. Li, T. Y. Ng and C. F. Chua 2002 Journal of Sound and
Vibration 251, 329-348. “Generalized differential quadrature method for
the free vibration of truncated conical panels”.
27.W. Soedel 1993 Vibrations of Shells and Plates. New York: Marcel Dekker;
Second edition.
28.A. E. H. Love 1927 A Treatise on the Mathematical Theory of Elasticity. New
York: Cambridge University Press; Fourth edition.
29.W. Y. Li, Y. K. Cheung and L. G. Tham 1986 Journal of Engineering
Mechanics, 112, 43-54. “Spline finite strip analysis of general plates”.