簡易檢索 / 詳目顯示

研究生: 李仕宇
Li, Shi-Yu
論文名稱: 應用微分值積法於圓錐薄殼之振動分析
Vibration Analysis of Conical Shells by the Differential Quadrature Method
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 58
中文關鍵詞: 圓錐薄殼微分值積法
外文關鍵詞: DQM, conical shell
相關次數: 點閱:48下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以微分值積法(Differential Quadrature Method)來分析圓錐薄殼的自然振動行為。本論文採用Love的薄殼理論,以微分值積法的轉化規則將圓錐薄殼的偏微分運動方程式轉換成代數方程,再加上自然座標轉換的結果,將原始的微分權值矩陣轉換成新的一組權值矩陣,以分析圓錐薄殼的自然振動頻率。本研究的結果收歛性很好,且與文獻的結果比較差距皆相當小,驗證了使用新的權值矩陣於微分值積法來分析圓錐薄殼結構的準確性。文中針對開放式與封閉式圓錐薄殼在不同邊界條件以及不同半頂點角、不同圓錐切割比例對自然頻率的影響做數值比較與探討,結果顯示微分值積法於圓錐薄殼的自然振動分析非常方便及快速,並且具有良好的準確性。

    In this thesis, the free vibration behavior of truncated conical shells based on the Love’s thin shell theory is investigated by using the differential quadrature method (DQM). By using the DQM, the equations of motion of free vibration of conical shells in the differential form are reduced into algebraic equations. A new weighting matrix is obtained through natural coordinate transformation. To evaluate the accuracy of the new weighting matrix used in DQM, numerical results obtained by the DQM are compared with those in the literature. Furthermore, effects of the semi-vertex angle and the ratio of truncation on the natural frequency of truncated conical shells are studied. Numerical results show the superb accuracy, efficiency, and convenience of the DQM.

    摘要.........................................................i 英文摘要....................................................ii 致謝.......................................................iii 表目錄......................................................vi 圖目錄.....................................................vii 第一章 緒論.................................................1 1-1 前言..................................................1 1-2 研究動機..............................................2 1-3 文獻回顧..............................................3 1-4 本文研究..............................................8 第二章 圓錐薄殼之運動方程式................................10 2-1 運動方程式...........................................10 2-2 位移場...............................................11 2-3 應變位移與應力應變關係式.........................12 2-4 位移運動方程式.......................................15 2-5 邊界條件.............................................17 第三章 微分值積法..........................................19 3-1 微分值積法的原理.....................................20 3-2 取樣點...............................................22 3-3 新的權值矩陣.........................................23 3-4 修正關係式...........................................29 3-5 微分值積法之應用.....................................31 3-6 邊界條件修正矩陣.....................................35 第四章 數值模擬結果與討論..................................36 4-1 收斂性與準確性分析...................................37 4-2 封閉式圓錐薄殼............... .......................38 4-3 開放式圓錐薄殼.......................................39 第五章 結論................................................41 參考文獻....................................................43 自述........................................................58

    1.R. E. Bellman and J. Casti 1971 Journal of Mathematical Analysis and
    Application 34, 235-238. “Differential quadrature and long-term
    integration”.

    2.C. H. Chang 1981 The Shock and Vibration Digest 13, 9-17. “Vibration of
    conical shells”.

    3.T. Irie, G. Yamada and Y. Kaneko 1984 Journal of Sound and Vibration 92, 447-
    453. “Natural frequencies of truncated conical shells”.

    4.L. Tong 1993 International Journal of Engineering Science 31, 719-733.
    “Free vibration of orthotropic conical shells”.

    5.L. Tong 1993 International Journal of Mechanical Sciences 35, 47-61. “Free
    vibration of composite laminated conical shells”.

    6.C. Shu 1996 International Journal of Mechanical Sciences 38, 935-949. “An
    efficient approach for free vibration analysis of conical shells”.

    7.Y. L. Wang, R. H. Liu and X. W. Wang 1999 Journal of Sound and Vibration
    224, 387-394. “Free vibration analysis of truncated conical shells by the
    differential quadrature method”.

    8.J. N. Rossetos and R. F. Parisse 1969 ASME Journal of Applied Mechanics 36,
    271-276. “The dynamic response of cylindrical and conical panels”.

    9.D. G. Ashwell and R. Gallagher 1976 Finite Element for Thin Shell and Curve
    Members. New York: John Wiley.

    10.D. Teichmann 1985 AIAA Journal 23, 1634-1637. “An approximation of the
    lowest eigenfrequencies and buckling loads of cylindrical and conical shell
    panels under initial stress”.

    11.R. S. Srinivasan and P. A. Krishnan 1987 Journal of Sound and Vibration
    117, 153-160. “Free vibration of conical shell panels”.

    12.Y. K. Cheung, W. Y. Li and L. G. Tham 1989 Journal of Sound and Vibration
    128, 411-422. “Free vibration analysis of singly curved shell by spline
    finite strip method”.

    13.K. M. Liew and M. K. Lim 1995 Engineering Structures 17, 63-70. “Vibratory
    behaviour of shallow conical shells by a global Ritz formulation”.

    14.C. W. Lim and K. M. Liew 1995 International Journal of Solids and
    Structures 33, 451-468. “Vibration of shallow conical shells with shear
    flexibility: a first order theory”.

    15.C. W. Lim and S. Kitipornchai 1999 Journal of Sound and Vibration 219, 813-
    835. “Effects of subtended and vertex angles on the free vibration of open
    conical shell panels: A conical coordinate approach”.

    16.N. S. Bardell, J. M. Dunsdon and R. S. Langley 1998 Journal of Sound and
    Vibration 217, 297-320. “Free vibration of thin, isotropic, open conical
    panels”.

    17.F. Civan and C. M. Sliepcevich 1984 Journal of Mathematical Analysis and
    Application 101, 423-443. “Differential quadrature for multi- dimensional
    problems”.

    18.C. W. Bert, S. K. Jang and A. G. Striz 1988 AIAA Journal, 26, 612-618.
    “Two new approximate methods for analyzing free vibration of structural
    components”.

    19.C. Shu and B. E. Richards 1992 International Journal of Numerical Methods
    for Fluids, 15, 791-798. “Application of generalized differential
    quadrature to solve two-dimensional incompressible Navier-Stokes
    equations”.

    20.X. Wang and C. W. Bert 1993 Journal of Sound and Vibration, 162, 566-572.
    “A new approach in applying differential quadrature to static and free
    vibrational analyses of beams and plates”.

    21.C. W. Bert and M. Malik 1996 ASME Applied Mechanics Review, 49, 1-28.
    “Differential quadrature method in computational mechanics: A review”.

    22.S.-T. Choi and Y.-T. Chou 2001 Journal of Sound and Vibration, 240, 937-
    953. “Vibration analysis of elastically supported turbomachinery blades by
    the modified differential quadrature method”.

    23.周玉端,民國八十九年六月,國立成功大學博士論文,台南市,改良型微分值積法及其
    元素法於結構力學之應用。

    24.Y.-T. Chou and S.-T. Choi 2000 The Chinese Journal of Mechanics, 16, 189-
    195. “Vibration and buckling analyses of beams by the modified
    differential quadrature method”.

    25.S.-T. Choi, Y.-T. Chou and C.-J. Huang 2002 Journal of the Chinese Society
    of Mechanical Engineers, 23, 1-9. “Buckling and vibration analyses of
    rectangular plates by the differential quadrature method”.

    26.K. Y. Lam, H. Li, T. Y. Ng and C. F. Chua 2002 Journal of Sound and
    Vibration 251, 329-348. “Generalized differential quadrature method for
    the free vibration of truncated conical panels”.

    27.W. Soedel 1993 Vibrations of Shells and Plates. New York: Marcel Dekker;
    Second edition.

    28.A. E. H. Love 1927 A Treatise on the Mathematical Theory of Elasticity. New
    York: Cambridge University Press; Fourth edition.

    29.W. Y. Li, Y. K. Cheung and L. G. Tham 1986 Journal of Engineering
    Mechanics, 112, 43-54. “Spline finite strip analysis of general plates”.

    下載圖示 校內:立即公開
    校外:2006-08-30公開
    QR CODE