| 研究生: |
陳侶安 Chen, Liu-an |
|---|---|
| 論文名稱: |
移動式機械手臂之建構及其在視覺導引物件抓取之應用 Construction of a Mobile Manipulator and Its Application to Vision-guided Material Grasping |
| 指導教授: |
蔡清元
Tsay, Tsing-Iuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 移動式機械手臂 、類神經模糊控制器 、行為基礎 、視覺導引 、眼在手 |
| 外文關鍵詞: | neural fuzzy controllers, behavior-based, vision-guided, eye-in-hand, mobile manipulator |
| 相關次數: | 點閱:117 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去數十年來,機器人技術的進步已將各種功能型機器人帶至我們的家中,現今,人們對於智慧型服務用機器人之需求預期將會增加。本論文的目標為設計一機械手臂來使服務用機器人能遞送物件,且提出一具有以行為基礎之看而後動架構之視覺導引控制策略,來抓取所需遞送之物件。本研究利用一個未經校準的眼在手視覺系統來提供視覺資料,用以控制手臂進行目標物之抓取。此策略是基於兩個預先定義的影像特徵,在類神經模糊控制器之設計中,每個影像特徵透過定義特定視覺行為之模糊規則,直覺式地決定相對於攝影機座標的一個自由度運動。藉由整合移動平台逼近階段之行為及機械手臂微調階段之行為,依序執行抓取工作。最後,實驗顯示出所提出之控制策略能用以實現在移動式機械手臂上,以逼近目標物且精確地定位其夾爪來抓取物件。
Over the last decades, progress in the robot technology has brought various functional robots to our homes’ doorsteps. Nowadays, it is also expected that the demand of the intelligent service robots will be increased. The objective of this thesis is to design a robot manipulator for a service robot to transfer material and propose a vision-guided control strategy with a behavior-based look-and-move structure to grasp the object to be transferred. This study utilizes an uncalibrated eye-in-hand vision system to provide visual information for controlling the manipulator to grasp the target object. The strategy is based on two predefined image features. In the designed neural fuzzy controllers, each image feature is taken to generate intuitively one degree of freedom motion command relative to the camera coordinate frame using fuzzy rules, which define a particular visual behavior. The behaviors in the approaching stage of the mobile base and in the positioning stage of the robot manipulator are then combined and executed sequentially to perform grasping tasks. Finally, the proposed control strategy is experimentally applied to realize a mobile manipulator that can approach a target object and precisely position its gripper to grasp the object.
[1]. M. A. Aizerman, E. M. Braverman and L. I. Rozonoer, “Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning,” Autom. Remote Control, Vol. 25, 1964.
[2]. A. Anglani, F. Taurisano, R. De Giuseppe and C. Distante, “Learning to Grasp by using Visual Information,” Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp.7-14, Nov. 1999.
[3]. B. E. Boser, I. Guyon and V. N. Vapnik, “A Training Algorithm for Optimal Margin Classifiers,” Proceedings of the Fifth Annual Workshop on Computational Learning Theory 5, pp. 144-152, 1992.
[4]. L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard and V. Vapnik, “Comparision of Classifier Methods: A Case Study in Handwriting Digit Recognition,” IEEE Computer Society Press In International Conference on Pattern Recognition, pp. 77-87, 1994.
[5]. C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, pp. 1–47, 1998.
[6]. A. J. Colmenarez, B. Frey and T. S. Huang, “Detection and Tracking of Faces and Facial Features,” Proceedings of the International Conference on Image Processing, Vol. 1, pp. 657-661, Oct. 1999.
[7]. J. J. Craig, Introduction of Robotics Mechanics & Control, Addision-Wesley, 1986.
[8]. R. D. Giuseppe, F. Taurisano, C. Distante and A. Anglani, “Visual Servoing of a Robotic Manipulator Based on Fuzzy Logic Control,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 2, pp.1487-1494, May 1999.
[9]. C. W. Hsu and C. J. Lin, “A Comparison of Methods for Multi-class Support Vector Machines,” IEEE Transactions on Neural Networks, pp.415-425, 2002.
[10]. W. Khalil and J. F. Kleinfinger, “A New Geometric Notation for Open and Closed Loop Robots,” Proceedings of IEEE International Conference on Robotics and Automation, pp.1174-1180, 1986.
[11]. U. KreBel, Pairwise Classification and Support Vector Machines. Advances in Kernel Methods-Support Vector Learning, MIT Press , Cambridge, pp. 254-268, 1999.
[12]. C. H. Lai, Design and Control of an Anthropomorphic Robot, Master Thesis, Dept. of Mechanical Eng., Nation Cheng Kung University, 2003.
[13]. E. D. Orin and W. W. Schrader, “Efficient Computation of the Jacobian for Robot Manipulator,” The International Journal of Robotics Research, Vol.3, No.4, pp.66-75, 1984.
[14]. S. Parasuraman, V. Ganapathy and B. Shirinzadeh, “Behavior Based Mobile Robot Navigation Technique using AI System : Experimental Investigations,” Proceeding of ARAS Conference, December 2005.
[15]. J. C. Platt, N. Cristianini and J. Shawe-Taylor. Large Margin DAGs for Multiclass Classification. In Advances in Neural Information Processing Systems, MIT Press, Vol. 12, pp. 547-553, 2000.
[16]. M. Pontil, and A. Verri, “Support Vector Machines for 3D Object Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, pp. 637–646, 1998.
[17]. H. A. Rowley, S. Baluja and T. Kanade, “Neural Network-Based Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, Issue 1, pp. 23-38, Jan. 1998.
[18]. P. Rusu, E. M. Petriu, T. E. Whalen, A. Cornell and H. J. W. Spoelder, “Behavior-based Neuro-fuzzy Controller for Mobile Robot Navigation,” IEEE Transactions on Instrumentation and Measurement, Vol. 52, Issue 4, pp. 1335- 1340, Aug. 2003.
[19]. A. Saffiotti, “Fuzzy Logic in Autonomous Robotics: Behavior Coordination,” Proceedings of the IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 573-578, July 1997.
[20]. L. Sciavicco and B. Siciliano, ”Modeling and Control of Robot Manipulators,” New York: McGraw-Hill Company, Inc. 1996.
[21]. J. Terrillon, M. Sadek, H. Fukamachi and S. Akamatsu, “Invariant Face Detection with Support Vector Machines,” Proceedings of the 15th International Conference on Pattern Recognition, Vol. 4, pp. 210-217, Sep. 2000.
[22]. Z. Wasik and A. Saffiotti, “A Fuzzy Behavior-Based Control System for Manipulation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1596-1601, Oct. 2002.
[23]. Z. Wasik and A. Saffiotti, “A Hierarchical Behavior-Based Approach to Manipulation Tasks,” Proceedings of the IEEE International Conference on Robots and Automation, pp.2780-2785, Set. 2003.
[24]. 林鎮源,移動式機器人之行為融合控制設計,國立交通大學,碩士論文,民國94年。