簡易檢索 / 詳目顯示

研究生: 周傑鴻
Chow, Kiet-Houng
論文名稱: 骨疾用之震波產生器之設計與性能評估
Design and Performance Evaluation of a Shock Wave Generator for Musculoskeletal disorders.
指導教授: 梁勝明
Liang, Shen-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 74
中文關鍵詞: 震波
外文關鍵詞: shock wave generator
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    題 目:骨疾用之震波產生器之設計與性能評估
    學 生: 周傑鴻
    指導教授: 梁勝明
      醫學界就很早就應用體外震波將腎臟泌尿系統的結石粉碎,達到治療的效果。如今,體外震波對肌腱筋膜病變的慢性疼痛及骨折後未癒合等,具有驚人療效,有顯著的改善效果。因此體外震波的應用已經不限於在泌尿科上,更被推廣到骨科、整形外科甚至於動物治療上。不過,體外震波的應用,在不同的領域有不同的療效。震波瞬時間聚焦,將腎臟裡結石粉碎;但是在骨科,震波聚焦將壓力及能量集中到要治療的組織上,造成顯微骨折,顯微血腫,刺激骨骼及軟組織的代謝、循環、修復、再生、止痛等作用,高能量的震波更能夠粉碎骨骼及軟組織內鈣化結石,醫學上利用這些原理來治療疾病。因此,我們希望能重新設計骨疾用之震波產生器,並以現用的水電式體外震波碎石用之震波產生器做改良,並分析新式震波產生器的效能,以便能適用在骨科及整形外科上。除此之外,本文也採用對插可調式電極棒之震杯,能在最簡易的操作環境下可以控制放電間距使得聚焦壓力能有最穩定的表現。不可調整的電極間距會因為電極棒長時間放電造成溶蝕,而影響聚焦的壓力甚至不能擊發。
      在硬體設計方面,利用鋼製反射體當作基座,並將馬達架設於基座底端,而為了馬達以及齒輪座與反射體之間的絕緣問題,齒輪座以及所有絕緣材料皆採用電木材質來設計,並使用鐵夫龍來對於電極棒外作絕緣。利用架設於反射體下之AC伺服馬達,以個人PC電腦透過MC8141A軸控卡以及I/O卡經編碼器來驅動馬達,並帶動齒輪皮帶控制電極棒的進給。而影像模組則是以CCD camera來擷取外界之類比影像,經由影像擷取卡將類比訊號轉為數為影像,並以影像處理之技術量測得電極棒之間距,而軟體程式設計與實現則是應用VISUAL C++做為程式設計發展平台。本實驗之結果,利用本論文自行發展操作環境找出反射震杯的實際焦點,並利用PCB壓力感測器測得焦點的壓力、可調式電極產生穩定的壓力而得到最佳之結石粉碎效果以及震波之能量密度參數等來評估反射震杯的效能。

    Abstract
    Title: Design and Performance Evaluation of a Shock Wave Generator for Musculoskeletal disorder.
    Student: Kiet-Houng Chow
    Advisor: Shen-Min Liang
      Extracorporeal generated shock waves have been introduced for medical therapy to disintegrate kidney stones. Since this time shock waves have changed the treatment of urolithiasis substantially. Urology is not the only medical field for shock waves in medicine. Meanwhile, shock waves have been used in Orthopedics and Traumatology to treat insertion tendonitis, non- or delayed unions, avascular necrosis of the head of femur and other necrotic bone alteration. Another field of shock wave application is the treatment of tendons, ligaments and bone. The idea of the shock wave therapy for orthopedic diseases is the stimulation of healing processes in tendons, surrounding tissue and bones. This is a completely different approach compared to urology where shock waves were used for disintegration. Thus, it is needed to design a new type of shock wave generator by referring to the present electro-hydraulic generator and doing refinement on it in order to meet the relevant applications. Moreover, a shock wave generator with a controllable spark gap system has been used in this thesis in order to have steady output pressure by adjusting the distance between the electrodes. It is because after a long time discharge of electrodes, the distance between the electrodes gets wider and erosion occurs at the electrodes. For this goal, a set of software (visual C++) and hardware has been developed.
      On the aspect of hardware, the bottom of a steel made ellipsoidal reflector is equipped with two AC servo motors. For the sake of insulation between the base and motors, the insulating material Bakelite is being used. Apart from the bakelite material, the Teflon is applied to the cover of electrode base as an insulation layer. After receiving commands from the 4-axis motor control card MC8141A inside PC, the motor drivers actuate the motors which are connected to the electrode base by a belt. Therefore, the gap control of electrodes is done by rotating gear turns of motors. In the image feedback system, image card has been utilized to change the analog video signal to digital signal images and the CCD camera is the image detection tool to measure the gap distance of electrodes.
      Results in this experiment show verification of the second focal point of the shock wave generator. The measurements of the pressure and energy intensity at the second focus with PCB pressure sensor have been carried out to evaluate the performance of the generator. Besides, some experiments have been done to measure the stone fragmentation efficiency under the gap control system and image feedback system.

    Contents Abstract.....................................iii Content......................................v List of Tables...............................vii List of Figures..............................viii Nomenclatures................................xi Chapter 1: ESWT 1-1 Introduction.............................1 1-2 Research Motivation......................2 1-3 Reviews of Papers........................4 Chapter 2: Principles of Shock Wave Therapy 2-1 Basic principles of Shock Wave...........5 2-2 The Equation of State....................8 2-3 Method of Shock Wave Generation: Electrohydraulic Generator...................9 2-4 Shock Wave Focusing......................11 2-5 Effects of Shock Waves in Stone Disintegration.........................16 Chapter 3: Experimental Apparatus 3-1 High voltage supply and control circuit..19 3-2 Semi-ellipsoidal reflector...............26 3-3 Automatic Gap-controlled system of electrodes...................................30 3-4 CCD cameras and image card for the image feedback system..............................35 3-5 Pressure Sensors (PVDF and PCB Pressure Sensor)...............37 3-6 Instrumentation..........................38 Chapter 4: Result and Discussion 4-1 Definition of Physical Parameters........39 4-2 Shock Wave Peak Pressure and Focal Area..39 4-3 Energy flux density......................46 4-4 Gap-Controlled electrode system with CCD camera..............................50 4-5 Stone Fragmentation Efficiency for Adjusted and Non-Adjusted Electrodes Gap.....55 Chapter 5: Conclusions and Future Work 5-1 Conclusions..............................57 5-2 Future works.............................58 Reference....................................59

    [1] Thiel, M., Nieswand, M., Dorffel, M., “Shock Wave Application in Medicine, A tool of Modern Operating Theatre,” HMT high Medical Technologies AG, Kreuzlingerstrasse 5, CH-8574 Lengwill, Switzerland, http://www.ismst.com/history.htm.

    [2] Sturtevant, B., “Shock Wave Physics of Lithotripters,” in Smith’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 529-552, 1996.

    [3] Bachmann, C.E., Gruber, G., W., Konermann, A. A., Gruber, G.. M., Ueberle, F., “ESWT and Ultrasound Imaging of the Musculoskeletal System,” Steinkopff Verlag Darmstadt, 2001.

    [4] Petty, R.W. and Kantrowitz, A., “The Production and Stability of Converging Shock Waves,” Journal of Applied Physics, Vol. 22, No. 7, pp. 878-886, 1951

    [5] Bailitis, E., “Der Schallimpuls eines Flussigkeitsfunkens (The pressure pulse of a liquid spark),” Zeitschrift fur angewandte Physic einshchlie β lch Nckleonik, Vol. 9, pp. 429-434. 1957

    [6] Hausler, E. and Kiefer, W., “Anregung von Stosswellen in Flussigkeiten durch Hochgeschwindigkeitswassertropfen,” Verh Dtsch Physik Ges, Vol. 10, pp. 36, 1971

    [7] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel., and Liedl, B., “Extracorporeal Shock-Wave Lithotripsy (ESWL) for Treatment of Urolithiasis,” Urology, Vol. 93, pp. 59-66, 1984.

    [8] Chaussy, C., Schmiedt, E., Jocham, D., Schuller, Brendel , W., Forsssman , B., and Walther , “First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves,” Journal of Urology, Vol. 127, pp. 417-420, 1982.

    [9] Valchanow V., Michailow P, “High Energy Shock Waves in the Treatment of Delayed and Non-union Fractures, Int. Orthopaed, 15: 181, 1991

    [10] Wang, C. J., Pai, C. H., Huang, S. Y., “Shock Wave Enhanced Neovascularization at the Tendon Bone Junction, an Experiment in dog Model,” 3rd Congress of the International Society for Musculoskeletal Shockwave Therapy (ISMST), Naples, June 1–3, 2000, p. 96.

    [11] Wang, C. J., Pai, C. H., Huang, S. Y., “Pathomechanism of Shock Wave Induced Injuries on Femoral Artery, Vein and Nerve,” 3rd Congress of the International Society for Musculoskeletal Shockwave Therapy (ISMST), Naples, June 1–3, 2000, p. 95.

    [12] Wang F.S., Yang, K.D., Wang, Y., Wang, C. J., “Shock Wave Enhanced Growth Factor TGF-B,” 3rd Congress of the International Society for Musculoskeletal Shockwave Therapy (ISMST), Naples, June 1–3, 2000, p. 99.

    [13] A. Buzza, T. Dell’ Aquila , P. Giribona and C. Spagno, “The Performance of Different Pressure Pulse Generators for Extracorporeal Lithotripsy: A Comparison Based on Commercial Lithotripter for Kidney Stones,” Ultrasound in Med. & Biol., Vol. 21, No. 2, pp. 259-272, 1995.

    [14] AIUM/NEMA. Safety standard for diagnostic ultrasound equipment. AIUM/NEMA standard Publication UL1-1981, American Institute for Ultrasound in Medicine/National Electrical Manufacturer Association, 1981.

    [15] “The high voltage app notes are designed to answer question that may arise from specific types of installation,” http://www.lambda-emi.com/product_html/high_volt.htm

    [16] 楊智光, 國立成功大學航空太空工程學系碩士論文,“體外震波碎石機反射罩杯之設計”, 中華民國八十七年六月十日.

    [17] 萬龍瑞,國立成功大學航空太空工程學系碩士論文,“具結石粉碎分析功能之高效率震波產生器研究”, 中華民國九十二年六月

    下載圖示 校內:2005-07-12公開
    校外:2005-07-12公開
    QR CODE