| 研究生: |
陳驥之 Chen, Chi-Chih |
|---|---|
| 論文名稱: |
基於絕熱轉換捷徑理論之 光纖模態轉換器用於光纖高階模色散補償系統 Mode converter for higher order mode fiber dispersion compensation using shortcut to adibaticity |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 量子力學 、波導光學 、色散補償 、模態轉換器 |
| 外文關鍵詞: | waveguide optics, Quantum mechanics, mode converter, dispersion compensation |
| 相關次數: | 點閱:211 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中我們討論以光纖高階模的反常色散作為光纖的色散補償,以此方法做色散補償相較於其他方式其優點有:較小的非線性效應、可調的色散曲線與非靠近截止頻率的反常色散。因此,這樣的色散補償架構非常適合用於高功率的全光纖雷射系統。此架構所需的元件有二:模態轉換器與設計過的色散補償光纖。
在模態轉換器的設計上,傳統的方式是使用固定周期的光柵,使光柵週期符合光纖模態之拍長度(beat length),達到全功率之模態轉換的效果。此方法的缺點為對製程的錯誤容忍度低且頻寬較小。而近來光學與量子的相似性已被發現,因此我們可以透過以往用於量子控制的絕熱理論於波導理論中。透過使用絕熱理論設計出的模態轉換器,可達到良好的製程錯誤容忍度與較大的頻寬,但一般需較長的元件長度以符合絕熱條件,此缺點可於模態轉換器中多加一道光柵來改善。而此篇論文中進一步將描述模態轉換器的算符於三維空間中旋轉,使此元件能簡化為一道光柵,使我們的模態轉換器達到短距離高頻寬與大製程錯誤容忍度。
另外在色散補償光纖的設計與分析上,我們建立了一套基於有限差分法的分析工具,藉由此工具分析與設計具有核心與外環的光纖,使光纖在高階模達到合適的反常色散,作為色散補償之用。
In our research, we develop a fiber dispersion compensation module based on higher-order modes. By using higher order modes, we can obtain smaller nonlinear effect, tailorable dispersion curve, therefore, this module is very compatible with the high power laser module. The key components of this module are the mode converter and a well-designed dispersion compensation fiber.
By using long period grating (LPG), designing the coupling region of a resonant mode converter to the half of the beat length, we can achieve total power mode conversion. This kind of mode converter is easier to fabricate but having less error tolerance and narrow bandwidth. Recently, the analogies between quantum theory and waveguide optics has been investigated. From this, we can develop the mode converter with better error tolerance through adiabatic theory which has been used in the quantum control. For the adiabatic following mode converter, the device length must be long enough to satisfy the adiabatic condition. We can add the counter-diabatic term into the mode converter design to get the improvement but it requires an extra step in fabrication. Therefore, we introduce the rotation method of Hamiltonain to simplify the fabrication process into one step. For dispersion compensation, we propose to use the fiber with core-ring-trench structure to get the tailarable dispersion curve in the LP02 mode. We develop a finite-difference-based numerical tool to design and analyze these kinds of fibers.
[1] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, Analytic theory of additive pulse and Kerr lens mode locking. IEEE Journal of Quantum Electronics, 1993. 28: p. 2086-2096.
[2] R. L. Fork, O. E. Martinez, and J. P. Gordon, Negative dispersion using pairs of prisms. Optics Letters, 1984. 9: p.150-152.
[3] E. B. Treacy, Optical pulse compression with diffraction gratings. IEEE Journal of Quantum Electronics, 1969. QE-5: p.454-458.
[4] R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Optics Letters, 1994. 19: p.201-203.
[5] S. Ramachandran, Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices. Journal of lightwave technology, 23(11): p.3426-3443.
[6] J. W. Nicholson, S. Ramachandran, and S. Ghalmi, 91 fs Pulses from an Yb-Doped Figure-Eight Fiber-Laser Dispersion Compensated with Higher-Order-Mode Fiber. in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMU3.
[7] T. Ando, T. Murata, H. Nakayama, J. Yamauchi, and H. Nakano, Analysis and measurement of polarization conversion in a periodically loaded dielectric waveguide. IEEE Photonics Technology Letters, 2002. 14: p.1288–1290.
[8] S. Longhi, Quantum-optical analogies using photonic structures. Laser & Photonics Reviews, 2009. 3: p.243–261.
[9] S. Longhi, Adiabatic passage of light in coupled optical waveguides. PHYSICAL REVIEW E, 2006. 73: p.026607.
[10] A. del Campo, Shortcuts to adiabaticity by counter-diabatic driving. Physical Review Letters, 2013. 111: p.100502.
[11] X. Chen, I. Lizuain, A. Ruschhaupt, D. Gue´ry-Odelin, and J. G. Muga, Shortcut to Adiabatic Passage in Two- and Three-Level Atoms. Physical Review Letters, 2010. 105: p.123003.
[12] S.-Y. Tseng, Counterdiabatic mode-evolution based coupled-waveguide devices. Optics express, 2013. 21(18): p.21224.
[13] J. Marcou, J. L. Auguste, and J. M. Blondy, Cylindrical 2D Beam Propagation Method for Optical Structures Maintaining a Revolution Symmetry. Optical Fiber Technology, 1999. 5: p.105-118.
[14] K. Kawano and T. Kitoh, Introduction to optical waveguide analysis. Wiley, New York, 2001.
[15] P.-S. Kildal, Waveguides and transmission lines in gaps between parallel conducting surfaces. European patent application, 2008. EP08159791.6.
[16] E. Alfonso , M. Baquero , A. Valero-Nogueira , J. I. Herranz and P.-S. Kildal, Power divider in ridge gap waveguide technology. EuCAP, 2010. vol. C32P1-2
[17] K. Okamoto, Fundamentals of optical waveguides, 2nd ed. Elsevier, Amsterdam, 2006.
[18] B. E. Little and W.P Huang, Coupled mode theory for optical waveguides. Progress in electromagnetics research, 1995.
[19] M. E. Marhic, Discrete Fourier transforms by single-mode star networks. Optics Letters, 1987. 12: p.63–65.
[20] A. R. Gupta, K. Tsutsumi, and J. Nakayama, Synthesis of Hadamard transforms by use of multimode interference optical waveguides. Applied Optics, 2003. 15: p.2730-2738.
[21] M. Reck and A. Zeilinger, Experimental realization of any discrete unitary operator. Physical Review Letters, 1994. 73: p.58–61.
[22] T. Jannson, Information capacity of Bragg holograms in planer optics. The Journal of the Optical Society of America, 1981. 71: p.342-347.
[23] S.-Y. Tseng, Development of linear and nonlinear components for integrated optical signal processing. Department of Electrical Engineering and Computer Science, University of Maryland, 2006.
[24] D. J. Brady and D. Psaltis, Holographic interconnections in photorefractive waveguides. Applied Optics, 1991. 30: p.2324-2333.
[25] C. C. Gerry and P. L. Knight, Introductory Quantum Optics. Cambridge, 2005.
[26] K. FUJII, Introduction to the Rotating Wave Approximation (RWA) : Two Coherent Oscillations. Quantum Physics, 2013. 1301.3585v2
[27] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, High-fidelity quantum driving. Nature Physics, 2012. 8: p.147-152.
[28] K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics, 1998. 70(3).
[29] X. Sun, H.-C. Liu, and A. Yariv, Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Optics Letters, 2009. 34: p.280-282
[30] M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields. The Journal of Physical Chemistry A, 2003. 107: p.9937-9945.
[31] S. K. Korotky, Three-space representation of phase-mismatch switching in coupled two-state optical systems. IEEE Journal of Quantum Electronics, 1986. 22: p. 952-958
[32] J. Gallier, Geometric Methods and Applications. Springer, 2011. p.287-299
[33] D. B. Westra, SU(2) and SO(3). (2008)
[34] E. P. Wigner, Group Theory and its Application to the Quantum Mechunics of Atomic Spectra. New York: Academic, 1959. p. 157-161.
[35] G. Dattoli, C. Cenrioli, and A. Torre, The Similarity Transformation Method and Diagonalization of Two-Photon Hamiltonians. Il Nuovo Cimento B Series 11, 1988. 101(5): p.557-567.
[36] J.-R. Qian and W.-P. Huang, Coupled-Mode Theory for LP Modes. Journal of lightwave technology, 1986. 4(6): p.619 – 625.
[37] D. Marcuse, Coupled mode theory of round optical fibers. The bell system technical journal. 52(6).
[38] S. Ruan, Y. Huang and C. Du, Laser Direct Writing of Long Period Fiber Grating by 800 nm Femtosecond Laser Pulses. Journal of Nonlinear Optical Physics & Materials, 2008. 17(4): p.425–433.
[39] R. Kashyap, “Fiber bragg grating”, Academic express, 1999. p.57
[40] B. Li, L. Jiang, S. Wang, H.-L. Tsai, H. Xiao, Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing. Optics&LaserTechnology, 2011. 43: p.1420–1423.
[41] S. Savin, M. J. F. Digonnet, G. S. Kino, H. J. Shaw, Tunable mechanically induced long-period fibergratings. Optics Letters, 2000. 25(10): p.710
[42] Datasheet of nLight passive 12/125 SC: http://www.nlight.net/nlight-files/file/DatasheetsV2/Passive%20Fiber/nLIGHT_LIEKKI_Passive%20Fiber_Fiber%20Laser_102813.pdf
[43] A. J. Fielding, Christopher C. Davis, Experimental Observation of Mode Evolution in Single-Mode Tapered Optical Fibers. Journal of lightwave technology, 1999. 17(9): p. 1649 - 1656
[44] T.-Y. Lin, S.-Y. Tseng, Analysis of fiber-grating based optical mode. Master thesis of National Cheng Kung university, 2013.
[45] S. Ramachandran, Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices. Journal of lightwave technology, 2005. 23(11): p. 3426 - 3443.
[46] D. Gloge, Weakly guiding fibers. Applied Optics, 1971. 10: p. 2252-2258.
[47] A. Yariv and P. Yeh, Photonics- optical electronics in modern communications 6th ed. Oxford University Press, 2006.
[48] N. Kuwaki, M. Ohashi, C. Tanaka, N. Uesugi, S. Seikai and Y. Negishi, Characteristics of dispersion-shifted dual shape core single-mode fibers. Journal of lightwave technology, 1987. 5(6): p.792-797
[49] T. D. Croft, J. E. Ritter, and V. A. Bhagavatula, Low-loss dispersion-shifted single-mode fiber manufactured by the OVD process. Journal of lightwave technology, 1985. 3(5): p.931-934.
[50] L. G. Cohen, W. L. Mammel, and S. J. Jang, Low-loss quadruple-clad single-mode lightguide with dispersion below 2 ps/km/nm over the 1.28 I~m-1.65 txm wavelength range. Electronics Letters, 1982. 18: p.1023-1024.
[51] K. Kawano and T. Kitoh, Introduction to optical waveguide analysis. Wiley, New York, 2001.
[52] J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamashita, Temperature dependence of refractive index of SiO 2 glass. Journal of Non-Crystalline Solids, 1991. 135: p. 86-89.
[53] K. Okamoto, Fundamentals of optical waveguides, 2nd ed. Elsevier, Amsterdam, 2006. p.100
[54] V. Brückner , To the use of Sellmeier formula. Springer, Elements of Optical Networking, 2011.