簡易檢索 / 詳目顯示

研究生: 楊立筠
Yang, Li-Yun
論文名稱: 探討VP-16 (Etoposide)對於人類肺腺癌細胞A549的影響:初級纖毛所扮演的角色
To investigate the effect of VP-16 (Etoposide) on human lung adenocarcinoma cell A549: the role of primary cilia
指導教授: 王家義
Wang, Chia-Yih
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 64
中文關鍵詞: Etoposide初級纖毛肺腺癌細胞自噬作用Akt
外文關鍵詞: Etoposide, Primary cilia, Adenocarcinoma, Autophagy, Akt
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 初級纖毛在細胞訊息傳遞以及控制細胞週期進行中扮演著重要的作用。過去認為,當細胞週期停在G0期時,初級纖毛會開始生長。初級纖毛開始生長的時候,TTBK2會被傳送到母親中心粒的位置,然後將在母親中心粒上的CP110磷酸化。而磷酸化的CP110會從母親中心粒上離開,接著TTBK2會募集生長初級纖毛的相關蛋白使初級纖毛能夠開始生成。長期以來人們一直認為癌細胞並不會生長初級纖毛。然而,最近的研究表明,在有些癌細胞中,如肺腺癌A549細胞,在細胞骨架被破壞或接受外在壓力刺激時會長出初級纖毛的結構。所以在本實驗中,我們想研究抗癌藥物VP-16 (Etoposide)對於A549中心體的作用,並試圖找到出初級在其中所扮演的角色。
    在VP-16 (Etoposide)處理後,A549細胞中並未觀察到中心體異常增生,相反的,我們觀察到了初級纖毛的生長。所以我們接著觀察初級纖毛生長是否受到DNA損傷反應的調控。觀察到上游相關蛋白如DNA-PK,ATM和ATR的活化,然而,在處理抑制劑後發現這些蛋白的活性抑制不影響初級纖毛生長。有趣的是,我們發現Akt的抑制會降低VP-16 (Etoposide)處理後的初級纖毛增生。所以Akt在VP-16 (Etoposide)誘發的初級纖毛生長中扮演著關鍵的作用。最近的研究顯示抑制PI3K / AKT訊息傳遞通路會促進細胞自噬,因此我們也觀察了細胞自噬作用。我們的結果顯示,當VP-16 (Etoposide)處理後肺腺癌A549細胞會啟動自噬作用。
    最後我們想知道初級纖毛在A549細胞中所扮演的角色,因此我們使用siRNA敲除初級纖毛內的運輸蛋白並處理了VP-16 (Etoposide)以觀察有無初級纖毛的差異,結果顯示,在VP-16 (Etoposide)加入後,初級纖毛被敲除的組別細胞死亡率較高。根據我們的實驗結果,我們認為初級纖毛在VP-16 (Etoposide)處理後生長對於A549細胞是起一個保護的作用。
    我們的實驗結果證實,VP-16 (Etoposide)加入會促進A549細胞初級纖毛形成,並且是透過Akt的影響。根據目前的實驗結果,初步認為初級纖毛在VP-16 (Etoposide)加入後對A549細胞起保護作用。在添加抗癌藥物後細胞促進其生長以維持細胞存活。

    SUMMARY

    The primary cilium extends outside the cell as a cellular antenna, and primary cilium was important in cell cycle progression. It has been suggested that cancer cells do not grow primary cilia. However, recent studies show that they may have the ability to grow cilia when stresses, but its biological significance is still unclear. We would like to study the effect of anticancer drug Etoposide on the centrosome of A549, and we founded that after Etoposide treatment for 24 hours, A549 induce cilia formation. Upon Etoposide treatment, DNA damage response up stream markers like ATM, ATR and DNA-PKcs didn’t affect the cilia formation in A549. Its seems that Etoposide were induced DNA damage response in A549 cells, but the mechanism in Etoposide induced A549 cells ciliogenesis are not go through the same way. Then we found that Akt was activated and co-treatment of Etoposide and Akt inhibitors, the primary cilia formation was reduced. In addition, we also found the autophagy was activated by Etoposide, and the activated autophagy facilitated ciliogenesis and maintained cell survival. To further confirm the role of primary cilia upon Etoposide treated, primary cilia were disrupted by siRNA against intraflagellar transport protein IFT88, and we observed reduced cell viability was observed in cilia deficient cells. Thus, Etoposide induced primary cilia for protecting A549 cells from death via Akt and/or autophagy pathways.

    目錄 中文摘要 I 英文延伸摘要 III 誌謝 VI 目錄 VIII 介紹 1 一、 肺癌 1 1-1流行病學統計 1 附圖一、衛生福利部統計105年台灣十大死因 1 附圖二、衛生福利部統計105年兩性十大癌症死亡率 2 1-2肺癌症狀 2 1-3肺癌分類 3 附圖三、肺癌細胞的分類 3 二、 非小細胞肺癌的治療 4 2-1手術治療(Surgery) 4 2-2放射線治療(Radiotherapy) 5 2-3標靶治療(Targeted therapy) 5 附圖四、標靶藥物的作用方式 5 2-4化學治療(Chemotherapy) 6 附圖五、肺癌常用的化療藥物 6 三、 VP-16 (Etoposide) 7 3-1化學名 7 附圖六、VP-16 (Etoposide) 7 3-2 VP-16的藥理作用 7 3-3 VP-16在肺癌治療中所扮演的角色 8 四、 DNA Damage Response 9 4-1 DNA Damage Response對細胞的影響 9 附圖七、DNA damage 9 4-2 DNA Damage Response常見的路徑 10 五、 Akt 11 5-1 Akt的結構與功能 11 5-2 Akt的上下游 11 六、 中心體與癌症的相關性 12 6-1中心體的結構 12 附圖八、中心體結構 12 6-2中心體的功能 12 6-3中心體細胞週期的關係 13 6-4中心體的複製 13 附圖九、中心體周期 14 七、 細胞初級纖毛 15 7-1細胞初級纖毛的結構 15 附圖十、纖毛結構 15 7-2細胞初級纖毛的功能 15 7-3細胞初級纖毛與癌症 16 八、 實驗目的 16 實驗材料與方法 17 A. 細胞培養(Cell culture) 17 B. 細胞存活率檢測(Cell viability) 17 C. 蛋白質萃取與定量(Protein assay) 17 D. 西方墨點法(Western Blot) 18 E. 免疫螢光染色法 19 F. 統計分析 19 結果 20 A. A549細胞在VP-16(Etoposide)處理24小時後中心體無過度複製 20 B. 血清飢餓以及actin結構被破壞會促進A549細胞初級纖毛生長 20 C. A549細胞在VP-16(Etoposide)處理24小時後促進初級纖毛生長 21 D. DNA損傷反應與肺腺癌A549細胞促進細胞纖毛生長的關係 22 E. 細胞生長相關蛋白對於肺腺癌A549細胞處理VP-16(Etoposide)影響 22 F. 初級纖毛與細胞自噬作用的關係 23 G. 初級纖毛在A549細胞中所扮演的角色 24 討論 26 一、 癌症與初級纖毛之間的連結 26 二、 細胞自噬作用與初級纖毛的關係 27 三、 DNA損傷反應與初級纖毛之間的交互作用 29 四、 Akt在初級纖毛生長中所扮演的角色 31 參考文獻 32 結果圖 39 Fig.1 VP-16 (Etoposide)能夠促進肺腺癌A549細胞產生DNA damage 39 Figure 2. VP-16 (Etoposide)能夠使得腎上腺皮質癌細胞(ACT cells)產生Multiple centrosomes 40 Figure 3.VP-16 (Etoposide)不能夠使得肺腺癌A549細胞產生Multiple centrosomes 41 Figure 4. Serum starvation以及actin filament被破壞能夠促進肺腺癌A549細胞長出初級纖毛 42 Figure 5. VP-16 (Etoposide)能夠促進肺腺癌A549細胞長出初級纖毛 43 Figure 6. VP-16 (Etoposide)能夠促進肺腺癌A549細胞初級纖毛的生長 45 Figure 7.化療藥物Cisplatin能夠促進肺腺癌A549細胞長出初級纖毛 46 Figure 8. VP-16 (Etoposide)在肺腺癌A549細胞中促進DNA damage response上游分子活化 47 Figure 9. VP-16 (Etoposide)所促進的DNA damage response相關蛋白激酶的活化不參與Etoposide促進肺腺癌A549細胞的初級纖毛生長 48 Figure 10. VP-16 (Etoposide)夠促進細胞生長相關分子的活化 49 Figure 11. Chk2抑制劑無法抑制由VP-16 (Etoposide)所促進肺腺癌A549細胞產生的初級纖毛 50 Figure 12. ERK抑制劑無法抑制由VP-16 (Etoposide)所促進肺腺癌A549細胞產生的初級纖毛 51 Figure 13.Akt抑制劑抑制了由VP-16 (Etoposide)所促進肺腺癌A549細胞產生的初級纖毛 52 Figure 14.肺腺癌A549細胞處理VP-16 (Etoposide)後Akt蛋白質磷酸化隨著時間上升 53 Figure 15. 抑制Akt蛋白表達後合併處理VP-16 (Etoposide)促進肺腺癌A549細胞死亡率 54 Figure 16. VP-16 (Etoposide)增加肺腺癌A549細胞的自噬作用 55 Figure 17.細胞自噬抑制劑抑制了由VP-16 (Etoposide)所促進肺腺癌A549細胞產生的初級纖毛 56 Figure 18.合併處理細胞自噬抑制劑與VP-16(Etoposide)造成肺腺癌A549細胞死亡率增加 57 Figure 19.Roscovitine抑制由VP-16 (Etoposide)處理24小時所誘導的肺腺癌A549細胞初級纖毛的生長 58 Figure 20.Roscovitine合併處理VP-16 (Etoposide)過後導致肺腺癌A549的細胞死亡 59 Figure 21.敲除初級纖毛軸絲組成蛋白IFT88後對肺腺癌A549細胞在VP-16 (Etoposide)處理過後的影響 60 Figure 22.初級纖毛的有無造成在VP-16 (Etoposide)處理過後肺腺癌A549的細胞死亡 61 Figure 23.實驗模式圖 62 表一、論文中所使用抗體 63 表二、論文中所使用藥品 64

    參考文獻
    肺癌(Lung cancer)
    1.衛生福利部統計處, 105 年死因統計結果分析
    http://www.mohw.gov.tw/CHT/DOS/, 2014.

    1-1流行病學統計
    2.American Cancer Society. Cancer Facts & Figures 2018.
    3. GBD 2015 Risk Factors Collaborators†. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet. 8;388(10053):1659-1724.

    1-2肺癌症狀
    4. Patricia M. de Groot, M., Brett W. Carter, MD, Sonia L. Betancourt Cuellar,
    MD, Jeremy J. Erasmus, MD. Staging of Lung Cancer. Clin Chest Med, 2015.
    36: p. 179–196.
    5. Greene, F.L. AJCC cancer staging manual. Berlin: Springer-Verlag, 2002

    1-3肺癌分類
    6. Huang X, Yue S, Wang C, Wang H. Optimal three-dimensional reconstruction for lung cancer tissues. Technol Health Care. 2017 Jul 20;25(S1):423-434.
    7. Collins LG1, Haines C, Perkel R, Enck RE. Lung cancer: diagnosis and management. Am Fam Physician. 2007 Jan 1;75(1):56-63.
    8. Travis WD1 , Pathology of lung cancer. Clin Chest Med 2002. 23: p. 65-81.
    9. Jones GC1, Kehrer JD2, Kahn J2, Koneru BN2, Narayan R2, Thomas TO2, Camphausen K2, Mehta MP2, Kaushal A2. Primary Treatment Options for High-Risk/Medically Inoperable Early Stage NSCLC Patients. Clin Lung Cancer. 2015 Nov;16(6):413-30.

    肺癌治療
    2-1
    10. Michael A. Grippi, Jack A. Elias, Jay A. Fishman, Robert M. Kotloff, Allan I. Pack, Robert M. Senior, Mark D. Siegel. Fishman's Pulmonary Diseases and Disorders (4th ed.). McGraw-Hill, 2008: p. 1855–1856.
    11. Le Péchoux C1. Role of postoperative radiotherapy in resected non-small cell lung cancer: a reassessment based on new data. Oncologist. 2011;16(5):672-81.

    2-3
    12. D'Antonio C1, Passaro A2, Gori B3, Del Signore E2, Migliorino MR3, Ricciardi S3, Fulvi A3, de Marinis F2 Bone and brain metastasis in lung cancer: recent advances in therapeutic strategies. Ther Adv Med Oncol. 2014 May;6(3):101-14.

    2-4
    13. NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet. 2014 May 3;383(9928):1561-71.

    三、Etoposide
    3-2
    14. Alessandra Montecucco,*,1 Francesca Zanetta,1,2 and Giuseppe Biamonti1 Molecular mechanisms of etoposide. EXCLI J. 2015; 14: 95–108. Published online 2015 Jan 19.
    15. Deweese JE1, Osheroff N. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res. 2009 Feb; 37(3): 738–748.
    16. Rello-Varona S1, Gámez A, Moreno V, Stockert JC, Cristóbal J, Pacheco M, Cañete M, Juarranz A, Villanueva A. Metaphase arrest and cell death induced by etoposide on HeLa cells.
    Int J Biochem Cell Biol. 2006; 38(12):2183-95
    17. Smith PJ1, Souès S, Gottlieb T, Falk SJ, Watson JV, Osborne RJ, Bleehen NM. Etoposide-induced cell cycle delay and arrest-dependent modulation of DNA topoisomerase II in small-cell lung cancer cells. Br J Cancer. 1994 Nov; 70(5): 914–921.

    3-3
    18. Alessandra Montecucco,*,1 Francesca Zanetta,1,2 and Giuseppe Biamonti1 Molecular mechanisms of etoposide EXCLI J. 2015; 14: 95–108.
    19. Renata Rezonja,2 Lea Knez,3 Tanja Cufer,3 and Ales Mrhar1 Oral treatment with etoposide in small cell lung cancer – dilemmas and solutions. Radiol Oncol. 2013 Mar; 47(1): 1–13.
    20. Chiu CC1, Lin CH, Fang K. Etoposide (VP-16) sensitizes p53-deficient human non-small cell lung cancer cells to caspase-7-mediated apoptosis. Apoptosis. 2005 May;10(3):643-50.
    21. Young LC1, Campling BG, Cole SP, Deeley RG, Gerlach JH. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res. 2001 Jun;7(6):1798-804.

    四、DNA Damage Response
    4-1
    22. Giglia-Mari G1, Zotter A, Vermeulen W. DNA Damage Response. Cold Spring Harb Perspect Biol. 2011 Jan; 3(1): a000745.

    4-2
    23. Sirbu BM1, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol. 2013 Aug 1;5(8):a012724.
    24. Rupnik A1, Grenon M, Lowndes N. The MRN complex. Curr Biol. 2008 Jun 3;18(11):R455-7.
    25. Zou L1, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003 Jun 6;300(5625):1542-8.
    26. Zhou Y1, Lee JH1, Jiang W2, Crowe JL2, Zha S2, Paull TT3. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM. Mol Cell. 2017 Jan 5;65(1):91-104.

    Akt
    5-1
    27. Alessi DR1, Cohen P. Mechanism of activation and function of protein kinase B Curr Opin Genet Dev. 1998 Feb;8(1):55-62.
    28. William S. Chen,1,6 Pei-Zhang Xu,1 Kathrin Gottlob,1 Mei-Ling Chen,2 Karen Sokol,3Tanya Shiyanova,1 Igor Roninson,1 Wei Weng,4 Ryo Suzuki,5 Kazuyuki Tobe,5Takashi Kadowaki,5 and Nissim Hay1,6 Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene. Genes Dev. 2001 Sep 1; 15(17): 2203–2208.

    5-2
    29. Osaki M1, Oshimura M, Ito H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76.
    30. Zhang X1, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 2011 Nov;1813(11):1978-86.

    六、中心體與癌症的相關性
    6-1
    31. Fukasawa K1. Oncogenes and tumour suppressors take on centrosomes. Nature Reviews Cancer 2007 Dec;7(12):911-24.
    6-2
    32. Conduit PT1, Wainman A2, Raff JW2. Centrosome function and assembly in animal cells. Nature Reviews Molecular Cell Biology 2015 Oct;16(10):611-24.
    33. Prosser SL1,2, Pelletier L1,3. Mitotic spindle assembly in animal cells: a fine balancing act. Nature Reviews Molecular Cell Biology 2017 Mar;18(3):187-201.

    6-3
    34. Doxsey S1, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol. 2005 Jun;15(6):303-11.
    35. Daniel Pérez-Mongiovi,1 Clare Beckhelling,1,2 Patrick Chang,1 Christopher C. Ford,2 and Evelyn Houliston1 Nuclei and Microtubule Asters Stimulate Maturation/M Phase Promoting Factor (Mpf) Activation in Xenopus Eggs and Egg Cytoplasmic Extracts.
    J Cell Biol. 2000 Sep 4; 150(5): 963–974.
    36. Jackman M1, Lindon C, Nigg EA, Pines J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol. 2003 Feb;5(2):143-8.
    37. Kim S1, Tsiokas L. Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle. 2011 Aug 15;10(16):2683-90.

    6-4
    38. Fujita H1, Yoshino Y2, Chiba N2. Regulation of the centrosome cycle. Mol Cell Oncol. 2016 Mar; 3(2): e1075643.

    七、細胞初級纖毛
    7-1
    39. Deepak Venkatesh Primary cilia. J Oral Maxillofac Pathol. 2017 Jan-Apr; 21(1): 8–10.

    7-2.
    40. Satir P1, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010 Feb 15;123(Pt 4):499-503.
    41. Hidemasa Goto, Akihito Inoko, and Masaki Inagaki Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cell Mol Life Sci. 2013; 70(20): 3893–3905.
    42. Pazour GJ1, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000 Oct 30;151(3):709-18.

    7-3
    43. Cao M1, Zhong Q1. Cilia in autophagy and cancer Cilia. 2016 Feb 3;5:4.

    結果
    A
    44. Kuo LJ1, Yang LX. Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008 May-Jun;22(3):305-9.
    45. Ventura RA, Martin-Subero JI, Knippschild U, Gascoyne RD, Delsol G, Mason DY, Siebert R. Centrosome abnormalities in ALK-positive anaplastic large-cell lymphoma. Leukemia. 2004 Nov;18(11):1910-1.

    B
    46. Kobayashi T1, Dynlacht BD. Regulating the transition from centriole to basal body.
    J Cell Biol. 2011 May 2; 193(3): 435–444.
    47. Takahashi K1, Nagai T1, Chiba S2, Nakayama K3, Mizuno K4. Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J Cell Sci. 2018 Jan 8;131(1).
    48. Kim J1, Jo H1, Hong H1, Kim MH1, Kim JM1, Lee JK1, Heo WD2, Kim J1. Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat Commun. 2015 Apr 7;6:6781.

    C
    49. Jackson PK1. TTBK2 kinase: linking primary cilia and cerebellar ataxias.Cell. 2012 Nov 9;151(4):697-9.

    G.
    50. Husson H1, Moreno S1, Smith LA1, Smith MM1, Russo RJ1, Pitstick R2, Sergeev M3, Ledbetter SR1, Bukanov NO1, Lane M4, Zhang K4, Billot K5, Carlson G2, Shah J3, Meijer L5, Beier DR6, Ibraghimov-Beskrovnaya O7. Reduction of ciliary length through pharmacologic or genetic inhibition of CDK5 attenuates polycystic kidney disease in a model of nephronophthisis. Hum Mol Genet. 2016 Jun 1; 25(11): 2245–2255.

    討論
    一、 癌症與初級纖毛之間的連結
    51. Jenks AD1, Vyse S2, Wong JP2, Kostaras E1, Keller D3, Burgoyne T4, Shoemark A5, Tsalikis A2, de la Roche M6, Michaelis M7, Cinatl J Jr8, Huang PH2, Tanos BE9. Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer. Cell Rep. 2018 Jun 5;23(10):3042-3055.
    52. Han SJ1, Jung JK2, Im SS3, Lee SR4, Jang BC2, Park KM1, Kim JI5. Deficiency of primary cilia in kidney epithelial cells induces epithelial to mesenchymal transition.
    Biochem Biophys Res Commun. 2018 Feb 5;496(2):450-454.

    二、 細胞自噬作用與初級纖毛的關係
    53. Vitaliy O. Kaminskyy, 1 Tatiana Piskunova, 1 Irina B. Zborovskaya, 2 , 3Elena M. Tchevkina, 2 , 3 and Boris Zhivotovsky 1 , 3 ,* Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy. 2012 Jul 1; 8(7): 1032–1044.
    54. Pampliega, Olatz, Cuervo, Ana Maria. Autophagy and primary cilia : Dual interplay. Current Opinion in Cell Biology. 2016 Apr;39:1-7.
    55. Tang Z1, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B, Zhong Q. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature. 2013 Oct 10;502(7470):254-7.
    56. Wang S1, Livingston MJ, Su Y, Dong Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy. 2015 Apr 3;11(4):607-16.
    57. Ávalos Y1, Peña-Oyarzun D2,3, Budini M4, Morselli E1, Criollo A2,4. New Roles of the Primary Cilium in Autophagy. Biomed Res Int. 2017; 2017: 4367019.

    三、 DNA損傷反應與初級纖毛之間的交互作用
    58. Lord CJ1, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012 Jan 18;481(7381):287-94.
    59. Wang CY1, Huang EY2, Huang SC2, Chung BC2. DNA-PK/Chk2 induces centrosome amplification during prolonged replication stress. Oncogene. 2015 Mar 5;34(10):1263-9.
    60. Jackson SP1, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009 Oct 22;461(7267):1071-8.
    61. Alcantara D, O'Driscoll M. Congenital microcephaly. Am J Med Genet C Semin Med Genet. 2014 Jun;166C(2):124-39.
    62. Colin A. Johnson1 and Spencer J. Collis2 Ciliogenesis and the DNA damage response: a stressful relationship. Cilia. 2016; 5: 19.
    四、 Akt在初級纖毛生長中所扮演的角色
    63. Fresno Vara JA1, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004 Apr;30(2):193-204
    64. Mundi PS1,2, Sachdev J3, McCourt C4, Kalinsky K5,6. AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol. 2016 Oct;82(4):943-56.

    下載圖示 校內:2023-07-11公開
    校外:2023-07-11公開
    QR CODE