| 研究生: |
王姵文 Wang, Pei-Wun |
|---|---|
| 論文名稱: |
使用高通量定序分析基因標靶藥物PIP-CTB於口腔癌鱗狀細胞癌表基因體調控異常生物標記之作用 Using high-throughput sequencing to analyzed the genomic targets of PIP-CTB in the epigenetic deregulation biomarker in oral squamous cell carcinoma |
| 指導教授: |
黃則達
HUANG, Tze-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 口腔癌 、表基因體 、DNA甲基化 、次世代定序 、吡咯咪唑聚酰胺(Pyrrole-imidazole polyamide) 、組蛋白乙醯化轉移酶活化劑N-[4-Chloro-3-(trifluoromethyl)phenyl]-2-ethoxybenzamide(CTB) |
| 外文關鍵詞: | oral squamous cell carcinoma, epigenetic, DNA methylation, next-generation sequence, pyrrole-imidazole pyrrole, N-[4-Chloro-3-(trifluoromethyl)phenyl]-2-ethoxybenzamide (PIP-CTB) |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
頭頸癌是常見的惡性腫瘤之一,且是全世界男性惡性腫瘤排名第六的癌症◦這些惡性腫瘤包括鼻腔、口腔、鼻竇、咽喉和下咽上皮所產生的腫瘤。口腔癌是頭頸部最常見的癌症,而其中以鱗狀細胞癌為最常見,佔口腔所有惡性腫瘤約90%。口腔鱗狀細胞癌主要危險因素為嚼食檳榔、吸煙,喝酒、紫外線照射和HPV感染。口腔癌早期階段所引起的輕微的生理變化易被忽視,但早期診斷及治療可以有效的增加患者存活率。表基因體調控是指在不改變基因序列下,而對基因表達有改變。表基因體調控的主要機制有DNA甲基化的改變,組蛋白的修飾,及微小RNA調控。CpG島區DNA甲基化的改變為惡性腫瘤表基因體異常調控之一,本研究利用髮夾彎結構會去結合在特定的基因序列而形成第三股的小分子吡咯咪唑聚酰胺(Pyrrole-imidazole polyamide;) Py-Im辨識G/C(C/G),而Py-Py辨識T/A(A/T);並鍵結上功能為透過促進組蛋白乙醯化之N-[4-Chloro-3-(trifluoromethyl)phenyl]-2-ethoxybenzamide(CTB),來改變染色體於組蛋白纏繞的結構而調節基因的表現。本研究以1uM 的 PIP-CTB處理人類口腔鱗狀細胞癌(SCC-25),再利用次世代高通量定序(Next Generation Sequence)的方法分析表基因體調控異常,並藉由Pyrosequence,qRT-PCR 和 Western Blot分別去驗證其中GAD2基因在DNA,mRNA和Protein層面之調控改變,研究PIP-CTB小分子用於特定序列表基因體異常調控之治療,以幫助口腔鱗狀細胞癌病患。
SUMMARY
Head and neck squamous cell carcinoma (HNSCC) is the sixth common human cancer worldwide. Squamous cell carcinomas of the oral region (OSCC) are almost 90% of all HNSCC. The risk factors for oral squamous cell carcinoma are betel quid chewing, smoking, alcohol consuming, UV-exposures and HPV infection. In the early stages, OSCC can go unnoticed and painless with slight physical changes. However, early detection and treatment are important to improve the survival rates. Epigenetics is defined as heritable changes that are not DNA encoded sequence change, but reversible in the cell development and differentiation. The gene function is changed by epigenetics modification. Key mechanisms involved in epigenetic regulation are DNA methylation, histone modifications and micro ribonucleic acids (miRNAs). Previous study revealed the aberrant DNA methylation changes occurred at the promoter CpG island in OSCC. Hairpin pyrrole imidazole(Py-Im) polyamides are nuclease resistant compound that acts as the DNA binding domain (DBD) and synthetic oligomers with programmable sequence. Im/Py bind to the G-C(C-G) base pair and Py/Py bind to the A-T(T-A) on the DNA. The N-(4-Chloro-3-(trifluoromethyl)phenyl)-2-ethoxybenzamide (CTB), a small molecules of histone acetyltransferases (HATs) activator, compounded with pyrrole imidazole polyamide (PIP) of targeting specific DNA binding domain sequences. The synthetic dual-function drug called PIP-CTB that target to the DNA minor groove and effect gene expression. In this study we used high throughput sequence to analyze the genomic target of PIP-CTB by compared the human oral squamous cell carcinoma cell line (SCC-25) treated with 1µM PIP-CTB or without.
Chromatin immunoprecipitation of the methylate binding domain capture DNA and analyzed pH meter by Chip-based semiconductor next-generation sequencing were applied. We measured DNA, mRNA and protein levels of selected GAD2 genes by comparing Pyrosequencing, qRT-PCR and Western Blot from both control and PIP-CTB treated groups. Development of gene regulation PIP-CTB in order to reverse epigenetic deregulation loci susceptible to the epigenetic alter and application as a novel anti-cancer targeting therapy in oral squamous cell carcinoma (OSCC) are the main achievement of this study.
1. De Oliveira, S.R., et al., DNA methylation analysis of cancer-related genes in oral epithelial cells of healthy smokers. Arch Oral Biol, 2015. 60(6): p. 825-33.
2. Mascolo, M., et al., Epigenetic Disregulation in Oral Cancer. International Journal of Molecular Sciences, 2012. 13(2): p. 2331-2353.
3. Alaizari, N.A. and S.A. Al-Maweri, Oral cancer: knowledge, practices and opinions of dentists in yemen. Asian Pac J Cancer Prev, 2014. 15(14): p. 5627-31.
4. Crescenzi, D., et al., TNM classification of the oral cavity carcinomas: some suggested modifications. Otolaryngol Pol, 2015. 69(4): p. 18-27.
5. Montero, P.H. and S.G. Patel, CANCER OF THE ORAL CAVITY. Surgical oncology clinics of North America, 2015. 24(3): p. 491-508.
6. He, C. and P. Cole, Introduction: Epigenetics. Chemical reviews, 2015. 115(6): p. 2223-2224.
7. Ballestar, E., An introduction to epigenetics. Adv Exp Med Biol, 2011. 711: p. 1-11.
8. Bohacek, J. and I.M. Mansuy, Epigenetic Inheritance of Disease and Disease Risk. Neuropsychopharmacology, 2012. 38: p. 220.
9. Zovkic, I.B., M.C. Guzman-Karlsson, and J.D. Sweatt, Epigenetic regulation of memory formation and maintenance. Learning & Memory, 2013. 20(2): p. 61-74.
10. Massart, R., et al., Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. J Neurosci, 2015. 35(21): p. 8042-58.
11. Lister, R., et al., Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009. 462(7271): p. 315-22.
12. Gkountela, S., et al., DNA Demethylation Dynamics in the Human Prenatal Germline. Cell, 2015. 161(6): p. 1425-1436.
13. Jin, B., et al., DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res, 2009. 69(18): p. 7412-21.
14. Gopalakrishnan, S., B.O. Van Emburgh, and K.D. Robertson, DNA methylation in development and human disease. Mutat Res, 2008. 647(1-2): p. 30-8.
15. Tognini, P., D. Napoli, and T. Pizzorusso, Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity. Frontiers in Cellular Neuroscience, 2015. 9: p. 331.
16. Jin, B., Y. Li, and K.D. Robertson, DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy? Genes & Cancer, 2011. 2(6): p. 607-617.
17. Rodriguez-Paredes, M. and M. Esteller, Cancer epigenetics reaches mainstream oncology. Nat Med, 2011. 17(3): p. 330-9.
18. Esteller, M., Cancer Epigenetics for the 21st Century: What’s Next? Genes & Cancer, 2011. 2(6): p. 604-606.
19. Baylin, S.B. and P.A. Jones, A decade of exploring the cancer epigenome — biological and translational implications. Nature Reviews. Cancer, 2011. 11(10): p. 726-734.
20. Chatterjee, R. and C. Vinson, CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. Biochim Biophys Acta, 2012. 1819(7): p. 763-70.
21. Mrksich, M., et al., Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7586-90.
22. Wade, W.S., M. Mrksich, and P.B. Dervan, Binding affinities of synthetic peptides, pyridine-2-carboxamidonetropsin and 1-methylimidazole-2-carboxamidonetropsin, that form 2:1 complexes in the minor groove of double-helical DNA. Biochemistry, 1993. 32(42): p. 11385-9.
23. Trauger, J.W., E.E. Baird, and P.B. Dervan, Recognition of DNA by designed ligands at subnanomolar concentrations. Nature, 1996. 382(6591): p. 559-61.
24. White, S., et al., Recognition of the four Watson-Crick base pairs in the DNA minor groove by synthetic ligands. Nature, 1998. 391(6666): p. 468-71.
25. Hsu, C.F., et al., Completion of a Programmable DNA-Binding Small Molecule Library. Tetrahedron, 2007. 63(27): p. 6146-6151.
26. Moynihan, P.J., D. Sychantha, and A.J. Clarke, Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg Chem, 2014. 54: p. 44-50.
27. Selvi, B.R., et al., Tuning acetylation levels with HAT activators: therapeutic strategy in neurodegenerative diseases. Biochim Biophys Acta, 2010. 1799(10-12): p. 840-53.
28. Patel, S., et al., Integrating Epigenetic Modulators into NanoScript for Enhanced Chondrogenesis of Stem Cells. Journal of the American Chemical Society, 2015. 137(14): p. 4598-4601.
29. Pennisi, E., Semiconductors Inspire New Sequencing Technologies. Science, 2010. 327(5970): p. 1190.
30. Purushothaman, S., C. Toumazou, and C.-P. Ou, Protons and single nucleotide polymorphism detection: A simple use for the Ion Sensitive Field Effect Transistor. Sensors and Actuators B: Chemical, 2006. 114(2): p. 964-968.
31. Lujan, R., R. Shigemoto, and G. Lopez-Bendito, Glutamate and GABA receptor signalling in the developing brain. Neuroscience, 2005. 130(3): p. 567-80.
32. Taylor, S.F. and I.F. Tso, GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr Res, 2015. 167(1-3): p. 84-90.
33. Bu, D.F., et al., Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci U S A, 1992. 89(6): p. 2115-9.
34. Grayson, D.R. and A. Guidotti, The Dynamics of DNA Methylation in Schizophrenia and Related Psychiatric Disorders. Neuropsychopharmacology, 2013. 38(1): p. 138-166.
35. Johnson, G.C., et al., A comprehensive, statistically powered analysis of GAD2 in type 1 diabetes. Diabetes, 2002. 51(9): p. 2866-70.
36. Ahmadian, A., M. Ehn, and S. Hober, Pyrosequencing: history, biochemistry and future. Clin Chim Acta, 2006. 363(1-2): p. 83-94.
37. Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology, 2013. 38(1): p. 23-38.
38. Shirakata, Y., et al., Histone h4 modification during mouse spermatogenesis. J Reprod Dev, 2014. 60(5): p. 383-7.
39. Huang, B. and R. Zhang, Regulatory non-coding RNAs: revolutionizing the RNA world. Mol Biol Rep, 2014. 41(6): p. 3915-23.
40. Matsusaka, K., et al., DNA methylation in gastric cancer, related to Helicobacter pylori and Epstein-Barr virus. World Journal of Gastroenterology : WJG, 2014. 20(14): p. 3916-3926.
41. Kawamoto, Y., T. Bando, and H. Sugiyama, Sequence-specific DNA binding Pyrrole–imidazole polyamides and their applications. Bioorganic & Medicinal Chemistry, 2018. 26(8): p. 1393-1411.
42. He, G. and J.K. Bashkin, What is the antiviral potential of pyrrole-imidazole polyamides? Future Med Chem, 2015. 7(15): p. 1953-5.
43. Yang, F., et al., Antitumor activity of a pyrrole-imidazole polyamide. Proc Natl Acad Sci U S A, 2013. 110(5): p. 1863-8.
44. Han, L., et al., A Synthetic DNA-Binding Domain Guides Distinct Chromatin-Modifying Small Molecules to Activate an Identical Gene Network. Angew Chem Int Ed Engl, 2015. 54(30): p. 8700-3.
45. Tao, R., et al., GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry, 2018. 23(6): p. 1496-1505.
46. Wei, J., et al., Protein phosphorylation of human brain glutamic acid decarboxylase (GAD)65 and GAD67 and its physiological implications. Biochemistry, 2004. 43(20): p. 6182-9.
47. Antal, C.E., et al., Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor. Cell, 2015. 160(3): p. 489-502.
校內:2023-01-01公開