簡易檢索 / 詳目顯示

研究生: 許凱鈞
Hsu, Kai-Chun
論文名稱: 利用多孔單晶碳化矽在矽基板上成長低應力高品質氮化鎵薄膜之研究
Growth and Characterization of Low Residual Stress GaN Thin Films on Si Substrate with Porous β-SiC Buffer-layer
指導教授: 管鴻
Kuan, Hon
方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 98
中文關鍵詞: 氮化鎵碳化矽緩衝層
外文關鍵詞: GaN, SiC, buffer-layer
相關次數: 點閱:174下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中描述於N型(111) 矽基板上使用不同緩衝層(多孔、單晶與多晶碳化矽)並利用金屬有機化學氣相沉積系統(MOCVD)成長氮化鎵薄膜的研究。其中單晶與多晶碳化矽緩衝層係以快速升溫化學氣相沉積系統(RTCVD)成長,多孔碳化矽則於單晶碳化矽薄膜上再利用電化學蝕刻法(electrochemical anodizaiton method)蝕刻出多孔狀結構。

    吾人以光致螢光光譜儀(PL)、拉曼光譜儀(Raman)來分析薄膜間的殘餘二維應力(biaxial stress),同時比較多孔碳化矽、單晶碳化矽、多晶碳化矽緩衝層上所成長的氮化鎵薄膜特性。結果發現多孔狀結構的殘餘應力值(-0.403GPa)幾乎為單晶β-SiC緩衝層(-1.186GPa)和多晶β-SiC緩衝層(-1.036GPa)的一半。又於場發射掃瞄式電子顯微鏡(FESEM)中也發現多孔狀結構與氮化鎵可形成最佳的接面,及最平整的氮化鎵薄膜,此外吾人並以此緩衝層於矽基板上製作出低漏電流及光增益為2427.23的MSM氮化鎵感光導體,驗證了本論文所提出之多孔狀結構的碳化矽緩衝層的確可幫助在矽基板上成長出高品質的氮化鎵薄膜。

    In this thesis, we used MOCVD to grow GaN thin films on Si substrates with various buffer-layers, i.e. cubic β-SiC、poly β-SiC and PSC(porous β-SiC).Theβ-SiC thin films were prepared with RTCVD, while the PSC thin films were fabricated by electrochemical anodization method on cubicβ-SiC thin films.

    The PL and Raman spectrometer were employed to analyze, and we also compared the residual biaxial stress of GaN thin films on different buffer-layers. Experimental results show the biaxial stress for the GaN thin film on PSC buffer-layer(-0.403GPa) is nearly one half of that on the cubic β-SiC buffer-layer(-1.186GPa) and poly β-SiC buffer-layer(-1.036GPa). Besides, from the FESEM cross section micro photo, we found the GaN on PSC has the smoothest and the best contact in the interface. Furthermore, a MSM photodetector using GaN on PSC buffer-layer was developed, and we found a very good photo/dark current ratio, thus evidenced the PSC indeed can help grow low leakage current and high quality GaN thin films on Si substrates.

    中文摘要..................................................................................................Ⅰ 英文摘要..................................................................................................Ⅱ 目錄..........................................................................................................Ⅳ 圖表目錄..................................................................................................Ⅶ 第一章 導論............................................................................................1 第二章 成長系統與量測儀器介紹........................................................5 2-1 Si基板之清潔(Wafer clean)............................................................5 2-2 快速升溫化學氣相沈積系統(RTCVD).........................................6 2-3 真空蒸著系統(Thermal vacuum evaporation system)...................7 2-4 退火系統(Anneal system)..............................................................8 2-5 量測儀器.........................................................................................9 2-5-1 原子力顯微鏡 (Atomic Force Microscope,AFM)...............9 2-5-2 場發射掃瞄式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM).............................................9 2-5-3 拉曼光譜儀 (Raman Spectroscopy)...................................10 2-5-4 X光繞射儀 (X-ray Diffraction, XRD).............................11 2-5-5 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)............................................................11 2-5-6 膜厚量測儀(α-Step)............................................................12 2-5-7 歐傑電子光譜儀 (Auger Electron Spectroscopy, AES)….12 2-5-8 光致螢光光譜儀(PL)..........................................................12 第三章 β-SiC薄膜特性研究................................................................14 3-1 β-SiC薄膜的成長..........................................................................14 3-2 不同Si/C比例的氣體對薄膜品質之影響 .................................15 3-3 不同H2量對薄膜品質的影響......................................................17 3-4 不同溫度對薄膜品質的影響.......................................................18 3-5 膜厚的分析...................................................................................20 3-6 結論...............................................................................................20 第四章 多孔狀β-SiC的機制與備制...................................................21 4-1 多孔結構的功效...........................................................................21 4-2 多孔β-SiC的形成機制................................................................22 4-3 蝕刻設備與方法...........................................................................24 4-4 多孔β-SiC的表面、側面SEM分析.............................................25 4-5 多孔β-SiC的AFM分析...............................................................26 4-6 多孔β-SiC的FTIR分析...............................................................26 4-7 多孔β-SiC的XRD分析...............................................................27 4-8 結論...............................................................................................27 第五章 成長於不同緩衝層上的GaN薄膜特性分析.........................28 5-1 GaN薄膜的成長............................................................................28 5-2 PL的結果與討論...........................................................................29 5-3 Raman的結果與討論....................................................................31 5-4 SEM的結果與討論.......................................................................32 5-5 MSM結構的光電性分析..............................................................33 5-6 結論...............................................................................................35 第六章 結論與未來展望......................................................................37 6-1 結論...............................................................................................37 6-2 未來展望.......................................................................................38 參考文獻...................................................................................39 附表...........................................................................................43 附圖...........................................................................................49 誌謝...........................................................................................97 自述...........................................................................................98

    [1] L. Liu, J. H. Edgar,”Substrates for gallium nitride epitaxy.”, Materials Science and Engineering, 37, p.p. 61-127, (2002)

    [2] H. P. Maruskas, J. J. Tietjen,” The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN.” Applied Physics Letter , 15, p.p.327-329, (1969)

    [3] J. E.Van Nostrand, J. Solomon, A. Saxler, Q.–H. Xie, D.C. Reynolds, D.C. Look,” Dissociation of Al2O3(0001) substrates and the roles of silicon and oxygen in n-type GaN thin solid films grown by gas-source molecular beam epitaxy.”, Journal of Applied Physics , 87, p.p.8766-8772, (2000)

    [4] P. G. Neudeck, “SiC Technology”, NASA Lewis Research Center, Cleveland, USA, (1998)

    [5] S. Nishino, H. Suhara, H. Ono and H. Matsunami,” Epitaxial growth and electric characteristics of cubic SiC on silicon.” Journal of Applied Physics, 61, p.p. 4889-4893, (1987)

    [6] Y. H. Seo, K. C. Kim, H. W. Shim, K.S. Naum, E.-K. Suh and H.J. Lee, ”Epitaxial Growth of Void Free β-SiC on Si by the Pyrolysis of Tetramethysilane”, Korean Physical Society , 33, p.p. S324-S329, (1998)

    [7] Y. H. Mo, K. S. Nahm, S. H. Yang, K. C. Kim, W. H. Lee, E.-K Suh, K. Y. Lim,” Growth and Characterization of GaN Thin Films on β-SiC/Si Substrate Using Rapid Thermal Chemical Vapor Deposition” Korean Physical Society ,34, p.p. S364-S369, (1999)

    [8] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, “Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer.” Journal of Crystal Growth, 115, p.p.634-638, (1991)

    [9] A. Sagar, C. D. Lee, R. M. Feenstra, C. K. Inoki and T. S. Kuan,” Plasma-assisted molecular beam epitaxy of GaN on porous SiC substrates with varying porosity”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21, pp. 1812-1817, (2003).
    [10] C. K. Inoki, T.S. Kuan, A. Sagar, C.D. Lee, R.M. Feenstra, D. D. Koleske, D. J. Diaz, P.W. Bohn, I. Adesida, “Growth of GaN on porous SiC and GaN substrates. ”, Physica Status Solidi (a), 200, No. 1, p.p. 44-47, (2003)

    [11] M. G. Mynbaeva, K. D. Mynbaev, V. A. Ivantsov, A. A. Lavrent'ev, B. A. Grayson and J. T. Wolan, , “Semi-insulating porous SiC substrates”, semiconductor science technology, 18, No. 6, 602, (2003)

    [12] A. J. Steckl, J. P. Li,”Epitaxial Growth of β-SiC on Si by RTCVD with C3H8 and SiH4.”, IEEE Transactions on electron devices, 39, p.p. 64-74, (1992)

    [13] S. Guosheng, W. Lei, L. Muchang, “Improved epitaxy of 3C-SiC Layers on Si(100) by new CVD/LPCVD system.” Chinese Journal of Semiconductors, 23, 800, (2002)

    [14] S. Guosheng, S. Yanling, W. Lei, “Heteroepitaxial growth and heterojunction characteristics of voids-free n-3C-SiC on p-Si(100)”, Chinese Journal of Semiconductor, 24, 567, (2003)

    [15] A. J. Steckl, J. Devrajan, C. Tran, R.A. Stall, “SiC rapid thermal carbonization of the (111)Si semiconductor-on-insulator structure and subsequent metalogranic chemical vapor deposition of GaN”, Applied Physics Letter, 69, p.p.2264-2266, (1996)

    [16] S. Guosheng, Z. Yongxing, G. Xin, W. Junxi, W. Lei, Z. Wanshun, W. Xiaoliang, Z. Yiping, L. Jinmin, “Preparation of 50mm 3C-SiC/Si(111) as Substrates Suited for Ⅲ-Nitrides.”, Chinese Journal of Semiconductor , 25, p.p. 1205-1210, (2004)

    [17] L. S. Hong, Z. L. Liu, “Gas-to-Particle Conversion Mechanism in Chemical Vapor Deposition of Silicon Carbide by SiH4 and C2H2 “, Industrial & Engineering Chemistry Research, 37 (9), p.p. 3602 -3609, (1998)

    [18] K. C. Kim, C. Ⅱ Park, J. Ⅱ Roh, K. S. Nahm, Y. B. Hahn, Y.-S. Lee, K. Y. Lim, “Mechanistic Study and Characterization of 3C-SiC(100) Grown on Si(100)”, Journal of The Electrochemical Society, 148(5), p.p. C383-C389, (2001)

    [19] O. H. Nam, M. D. Bremser, T. S. Zheleva, R. F. Davis, ”Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy.” , Applied Physics Letter, 71, p.p. 2638-2640, (1997)

    [20] S. Luryi and E. Suhir, ”New approach to the high quality epitaxial growth of lattice-mismatched materials” Applied Physics Letter, 49, p.p. 140-142, (1986)

    [21] C. K. Inoki, T.S. Kuan, A. Sagar, C.D. Lee, R.M. Feenstra, D. D. Koleske, D. J. Diaz, P.W. Bohn, I. Adesida, “Growth of GaN on porous SiC and GaN substrates. ”, Physica Status Solidi(a), 200, 1, p.p. 44-47, (2003)

    [22] J. B. Casady, R.W. Johnson,” Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review ”Solid-State Electron., 39, 10, p.p. 1409-1422, (1996)

    [23] I. Lauermann, D. Meissner, R. Memming, R. Reineke, B. Kastening, Dechema-Monographien Band 124 , p.617 (VCH Verlagsgesellschaft, 1991)

    [24] H. Morisaki, H. Ono, K. Yazawa, “Photoelectrochemical Properties of Single-Crystalline n-SiC in Aqueou Electrolytes”, Journal of The Electrochemical Society , 131, p.p. 2081-2086, (1984)

    [25] J. S. Shor, X. G. Zhang, R. M. Osgood, “Laser-Assisted Photoelectrochemical Etching of n-type Beta-SiC”, Journal of The Electrochemical Society, 139, p.p. 1213-1216, (1992)

    [26] M. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, A. G. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon” Journal of Crystal Growth, 73, p.p. 622-636, (1985)

    [27] I. M. Young, M. J. Beale, J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon”, Applied Physics Letter, 46, p.p.1133-1135, (1985)

    [28] B. Shen, K. Yang, L. Zang, Z. Chen, Y. Zhou, P. Chen, R. Zhang, Z. Huang, H. Zhou, Y. Zheng, “Study of Photocurrnet Properties of GaN Ultraviolet Photoconductor Grown on 6H-SiC Substrate”, Journal of Applied Physics, 38, p.p. 767-769, (1999)

    [29] Y. H. Mo, K. S. Nahm, S. H. Yang, K. C. Kim , W. H. Lee, E-K. Suh, K. Y. Lim, “Growth and Characterization of GaN Thin Films on β-SiC/Si Substrate using Rapid Thermal Chemical Vapor Deposition.” Journal of Korean Physical Society, 34, p.p. S364-S369, (1999)

    [30] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, H. Yang, ”Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire”, Applied Physics Letter, 83, p.p. 677-679, (2003)

    [31] P. Perlin, C. Jauberthie-Carllon, J. P. Itie, A. S. Miguel, I. Grzegory, A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure ”Physical Review B ,45, 83, (1992)

    [32] C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. AgerⅢ, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, R. F. Davis, “Strain-related phenomena in GaN thin films”, American Physical Society, 54, 24, (1996)

    [33] I. Ahmad, M. Holtz, N. N. Faleev, H. Temkin, “Dependence of the stress-temperature coefficient on dislocation density in epitaxial GaN grown on α-Al2O3 and 6H-SiC substrates”, Journal of Applied Physics, 95, 1692, (2004)

    [34] M. holtz, M. Seon, T. Prokofyeva, H. Temkin, R. Singh, F.P. Dabkowski, T. D. Moustakas, “Micro-Raman imaging of GaN hexagonal island structures”, Applied Physics Letters, 75, p.p. 1757-1759, (1999)

    [35] T. Kobayashi, N. Sawazaki, M. S. Cho, A. Hashimoto, A.Yamamoto, Y. Ito, “Reduced residual stress in GaN grown on 3c-SiC/Si(111) templates formed by C+-ion implantation”, Physica Status Solidi, No. 6, p.p. 1683-1686, (2006.)

    [36] X. Gao, J. Li, G. Sun, N. Zhang, L. Wang, W. Zhao, Y. Zeng, “Molecular Beam Epitaxial Growth of GaN on 3c-SiC/Si(111 ) Substrates Using a Thick AlN Buffer Layer”, Semiconducting and Insulating Materials, 2004. SIMC-XIII-2004. 13th International Conference , p.p. 49-52, (2004)

    [37] B. Shen, K. Yang, Z. Chen, Y. Zhou, P. Chen, R. Zhang, Z. Huang, H. Zhou, Y. Zheng, “Study of Photocurrent Properties of GaN Ultraviolet Photoconductor Grown on 6H-SiC Substrate”, Journal of Applied Physics, 38, pp. 767-769, (1999)

    下載圖示 校內:2012-07-16公開
    校外:2012-07-16公開
    QR CODE