簡易檢索 / 詳目顯示

研究生: 宋宜龍
Song, Yi-Long
論文名稱: 壓電致動器對複合樑振動抑制之分析
Vibration Suppression of Laminated Beams with Piezoelectric Actuators
指導教授: 蕭樂群
Shiau, Le-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: 振動抑制壓電有限元素法
外文關鍵詞: vibration suppression, piezoelectric, finite element method
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限元素法探討壓電複合樑之振動抑制,針對複合樑前三模態的組合討論壓電致動器不同施加電壓的方式和分別以速度和位移當作初始值所造成的影響。壓電致動器對稱貼附在複合樑的相對的表面,施加反相的電壓於上、下側的壓電致動器以產生控制彎矩,根據複合樑的能量的變化來改變電壓的正負號。結果顯示,不管是以速度或者位移當作初始值,其在單一模態的振動都受到良好的抑制,多個模態組合為初始值,獨立抑制各個模態的效果會比同時抑制每個模態的效果優良,從較高模態先抑制的效果比較低模態先抑制有效。

    The effect of piezoelectric actuator on vibration suppression of composite beam structure was investigated by Finite Element Method. The influence of the different voltage types apply to piezoelectric actuators, the initial condition of velocity and displacement on the combination of the first three modes of composite beam was studied. The piezoelectric actuators are symmetrically bonded on the opposite surface of the beam. In order to generate control moments, the out-of-phase voltages applied to piezoelectric actuators and change their signal according to the energy variation of composite beam. The results show that the vibration suppression of the single mode are notable for both of the velocity and displacement initial conditions. For the combination of various modes as the initial conditions, the effect of suppressing each mode independently is better than suppressing all modes simultaneously. Besides, the effect of suppressing the higher mode first is better than suppressing the lower mode first.

    摘要 ABSTRACT 誌謝 目錄 表目錄 I 圖目錄 II 第一章 緒論...............................................1 第二章 公式推導...........................................8 2.1 壓電材料之機電耦合行為................................8 2.2 複合材料之機械性質....................................9 2.3 壓電複合樑之控制方程式...............................12 2.4 形狀函數.............................................15 2.5質量矩陣、勁度矩陣與壓電致動器外力矩陣................17 2.6逐步積分法(Newmark method)............................18 2.7快速傅立葉轉換(FFT)...................................20 2.8施加電壓的判斷........................................21 2.9初始值的設定..........................................22 第三章 結果與討論........................................24 3.1程式驗證..............................................24 3.2以速度為初始條件壓電致動器對第二、三模態振動之影響....25 3.2.1施加不同電壓對前兩模態組合之影響....................26 3.2.2變換施加電壓方式的時間對前兩模態組合之影響..........28 3.3變換施加電壓方式的時間對其他模態組合之影響............31 3.3.1第一模態和第三模態組合之影響........................32 3.3.2第二模態和第三模態組合之影響........................32 3.3.3第一模態、第二模態和第三模態組合之影響..............33 3.4以位移為初始條件壓電致動器個別對前三模態振動之影響....33 3.4.1施加不同電壓對前兩模態組合之影響....................34 3.4.1變換施加電壓方式的時間對前兩模態組合之影響..........36 3.5變換施加電壓方式的時間對其他模態組合之影響............38 3.5.1第一模態和第三模態組合之影響........................38 3.5.2第二模態和第三模態組合之影響........................39 3.5.3第一模態、第二模態和第三模態組合之影響..............39 第四章 結論..............................................40 參考文獻.................................................42 自述.....................................................97 著作權聲明...............................................98

    1.B.G. Fitzpatrick, ”Shape matching with smart material structures using piezoceramic actuators,” Journal of Intelligent Materials System Structure, Vol. 8, No. 10, pp. 876-882, 1997.

    2.C. Chee, L. Tong, and G. Steven, ”A buildup voltage distribution (BVD) algorithm for shape control of smart plate structures,” Computational Mechanics, Vol. 26, No. 2, pp. 115-128, 2000.

    3.B. N. Agrawal and K.E. Treanor, ”Shape control of statically indeterminate laminated beams with piezoelectric actuators,” Smart Materials and Structures, Vol. 8, pp. 729-740, 1999.

    4.E. P. Hadjigeorgiou, G.E. Stavroulakis and C.V. Massalas, ”Shape control and damage identification of beams using piezoelectric actuation and genetic optimization,” International Journal of Engineering Science, Vol. 44, pp. 409-421, 2006.

    5.E. F. Crawley and Javier de Luis, ”Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol. 25, No. 10, pp. 1373-1385 1987.

    6.S. J. Kim and James D Jones, ”Quasi-static control of natural frequencies of composite beams using embedded piezoelectric actuators,” Smart Materials and Structures, Vol. 4, pp. 106-112, 1995.

    7.Bor. T. Wang and Craig A. Rogers, ” Modeling of Finite-Length Spatially-Distributed Induced Strain Actuators for Laminate Beams and Plates,” Journal of Intelligent Material Systems and Structures Vol. 38, NO. 2, 1991.

    8.G. Song, P. Z. Qiao, W. K. Binienda and G. P. Zou, ”Active Vibration Damping of Composite Beam using Smart Sensors and Actuators,” Journal of Aerospace Engineering, Vol. 15, No. 3, July 1, 2002.

    9.G.S. Agnes, ”Development of a modal model for simultaneous active and passive piezoelectric vibration suppression,” Journal of Intelligent Material Systems and Structures, Vol. 6, pp. 482-487, 1995.

    10.F. Pourki, ”Distributed Controllers for Flexible Structures Using Piezo-Electric Actuator/Sensors,” Proceedings of the 32nd Conference on Decision and Control, San Antonio, Texas, December 1993.

    11.O. J. Aldraihem, T. Singh, and R. C. Wetherhold, ”Realistic Determination of the Optimal Size and Location of Piezoelectric Actuator/Sensors,” Proceedings of the 1997 IEEE International Conference on Control Applications, Harford, CT, October 1997.

    12.J. H. Han and I. Lee, ”Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithms,” Smart Materials and Structures, Vol. 8, pp. 257-267, 1999.

    13.M. R. Kermani, M. Moallem, and R.V. Patel, ”Parameter selection and control design for vibration suppression using piezoelectric transducers,” Control Engineering Practice, Vol. 12, pp. 1005-1015, 2004.

    14.Y. Nam, J. Joh, M. Sasaki, and H. Yamada, ”Vibration suppression of a piezoelectric beam using a self-sensing algorithm,” in ICMIT 2005: Information Systems and Signal Processing, pp. 60412Y-60416, SPIE 2005.

    15.M. J. Parsons and A. Lumsdaine, ”Active Vibration Control with Optimized Piezoelectric Topologies,” Proceedings of SPIE, Vol. 6166, 2006.

    16.H. Allik and T. J. R. Hughes, “Finite Element Method for Piezoelectric Vibration,” International Journal Numerical Methods of Engineering, Vol. 2, pp. 151-157, 1970.

    17.Y. H. Lim, V. V. Varadan, and V. K. Varadan , ”Closed Loop Finite Element Modeling of Active Structural Damping in the Frequency Domain,” Smart Materials and Structures, Vol. 6, pp. 161-168, 1997.

    18.C. C. Lin, H. N. Huang, ”Vibration Control of Beam-Plates with Bonded Piezoelectric Sensors and Actuators,” Computers and Structures, pp. 239-248, 1999.

    19.M. Sunar, S. J. Hyder, and B. S. Yilbas, ”Robust design of piezoelectric actuators for structural control,” Comput. Methods Appl. Mech. Eng., vol. 190, pp. 6257-6270, 2001.

    20.Y. Bao, H. S. Tzou, and V. B. Venkayya, ”Analysis of nonlinear piezothermoelastic laminated beams with electric and temperature effects,” Journal of Sound and Vibration, Vol. 209, No. 3, pp. 505-518, 1998.

    21.K. M. Liew, X. Q. He, T. Y. Ng, and S. Kitipornchai , ”Finite Element Piezothermoelasticity Analysis and the Active Control of FGM Plates with Integrated Piezoelectric Sensors and Actuators,” Computational Mechanics, Vol .31, No. 3-4, pp. 350-358, July 2003.

    22.J. P. Jiang* and D. X. Li, ”A new finite element model for piezothermoelastic composite beam,” Journal of Sound and Vibration, Vol. 306, pp. 849-864, 2007.

    23.K. Chandrashekhara and R. Tenneti, ”Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators,” Smart Material and Structures, Vol. 4, pp. 281-290, 1995.

    24.J. C. B. Jr., J. M. Sloss, S. Adali, and I.S. Sadek, ”Modified bang-bang piezoelectric control of vibrating beams,” Smart Materials and Structures, Vol. 8, pp. 647-653, 1997.

    25.H. Y. Zhang and Y. P. Shen, ”Vibration suppression of laminated plates with 1-3 piezoelectric fiber-reinforced composite layers equipped with interdigitated electrodes,” Computers and Structures, Vol. 79, pp. 220-228, 2006.

    26.K. J. Bathe, ” Finite Element Procedures in Engineering Analysis,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., pp. 499-553 ,1982.

    下載圖示 校內:2014-07-22公開
    校外:2014-07-22公開
    QR CODE