| 研究生: |
葉書豪 Yeh, Shu-hao |
|---|---|
| 論文名稱: |
光電化學氧化法之氮化鋁鎵/氮化鎵金氧半異質結構場效電晶體其電特性研究 Investigation of Electrical Properties of Photoelectrochemical Oxide Film Formation on AlGaN/GaN MOS-HFETs |
| 指導教授: |
李清庭
Lee, Ching-Ting 張允崇 Chang, Yun-Chg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 氮化鎵 、光電化學 |
| 外文關鍵詞: | GaN, PEC |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵(Gallium Nitride, GaN)材料半導體已經被廣泛地應用於在高溫和高功率電子儀器和光電子的設備方面。近年來,氮化鎵系列放大器已陸續有相關發表。傳統的GaN MOSFETs其閘極氧化物多為利用蒸鍍或濺鍍的方式製作,然而氧化物易受到上述製程條件影響導致品質不佳。本論文中,我們利用光電化學(photoelectrochemistry, PEC),直接成長氧化鋁鎵 於氮化鋁鎵上做為氮化鋁鎵/氮化鎵金氧半異質結構場效電晶體的絕緣層,作為閘極的氧化層,如此可以避免氮化鋁鎵表面的污染並降低氧半接面的界面態。
與相同結構的氮化鋁鎵/氮化鎵金半異質結構場效電晶體比較:我們可以降低閘極漏電流達一萬倍以上。,漏電流大約在10-9A,這與金半異質結構場效電晶體的漏電流10-5A 有很顯著的提升。而在汲極飽和電流方面,閘極的氧化層40nm的氧化鋁鎵,可以發現到,在閘極電壓為0V 時,其ID分別為580mA/mm、536 mA/mm,而其ID最大值又分別為678mA/mm、624mA/mm。我們也發現到金氧半異質結構場效電晶體的閘極擺幅電壓(GVS)為9V,而金半異質結構場效電晶體則為5.5V。在高頻增益我們也能夠發現特性上的提升,元件偏壓在VGS=-4V、VDS=10V的高頻增益,其電流截止頻率為5.6GHz,功率增益截止頻率為10.6GHz。可以與MES-HFET(fT =2.8GHz,fMAX =7.2GHz)比較有顯著的提升。
Gallium nitride based semiconductors have been extensively used in high-temperature and high-power electronic devices and optoelectronic devices. With regard to the GaN amplifiers have been reported[1]. In conventional GaN MOSFETs, the gate oxide is externally deposited, such as SiO2, MgO, and Cd2O3. However, the quality of gate oxide is affected by the contaminant of the GaN surface. It causes the degradation of the devices to have larger gate leakage current and reduce the breakdown electric field. In this study, we use the photoelectrochemical (PEC) oxidation method to directly grow oxide films on AlGaN surface as gate dielectric layer of our AlGaN/GaN MOS-HFETs. It can avoid the influence of the contaminant of the AlGaN surface and improve the quality of the interface between AlGaN and gate oxide.
Compare AlGaN/GaN MES-HFETs with MOS-HFETs, the gate leakage current can be reduced more than four orders of magnitude even at room temperature, the leakage current at room temperature was about 10-9A, which is apparently better than MES-HFETs(10-5 A). The saturation drain current at VG=0V of MOS-HFETs and HFETs is 580mA/mm and 536mA/mm, respectively. The maximum value of the drain-source current of MOS-HFETs and HFETs is 678mA/mm and 624mA/mm, respectively. It was found that gate voltage swing (GVS) was 9V for MOS-HEMTs and 5.5V for MES-HFETs, respectively. In high frequency performance, the fT for MOS-HFETs and MES-HFETs was 5.6 GHz and 2.8 GHz, respectively. Moreover, the corresponding fmax for MOS-HFETs and MES-HFETs were 10.6 GHz and 7.2 GHz, respectively. Such results indicated that MOS-HFETs have better electric performances for high frequency applications.
第一章
1. O. Ambacher et al., “Two-dimentional electron gases induced by spontaneous andpiezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys , 85 , 6, 3222, (1999).
2. R.Dimitrov et al.,“Two-dimentional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam exitaxy and Metalorganic chemical vapor deposition on sapphire”, J. Appl. Phys., 87, 7, 3375,(2000).
3. Hadis Morkoc et al., “GaN-based modulation doped FETs and UV detectors,” Solid-State Electronics 46, 157, (2002).
4. O.Ambacher et al.,“Two dimensional electron gases induced by spontaneous andpiezoelectric polarization in undoped AlGaN/GaN heterostructures” J. Appl. Phys, 87, 334, (2000).
5. I. P. Smorchkova et al.,“Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam expitaxy,” J Appl Phys, 86, 4520,(1999).
6. Fabio Sacconi et al.,”Spontaneous and Piezoelectric Polarizatoin Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Trans. Electron Devices, 48, 3, (2001).
7. Lester F. Eastman et al.,“Undoped AlGaN/GaN HEMTs for Microwave Power Application,” IEEE Trans. Electron Devices, 48, 479,(2001).
8. H. C. Casey, Jr., G. G. Fountain and R. G. Alley, B. P. Keller and Steven P. DenBaars, “Low Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN”, Appl. Phys. Lett,68, 1850,(1996)
9. S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigation of SiO2/n-GaN and Si3N4/n-GaN Insulator–Semiconductor Interfaces with Low Interface State Density”, Appl.Phys. Lett., 73, 809,(1998)
10. B. Gaffey, L. J. Guido, X. W. Wang and T. P. Ma, “High-QualityOxide/Nitride/Oxide Gate Insulator for GaN MIS Structures”, IEEE Transactions on Electron Devices,48,458,(2001).
11. L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu andJ. K. Sheu, “High-Dielectric-Constant Ta2O5/n-GaN Metal-Oxide-Semiconductor Structure”, Appl. Phys. Lett.,77, 3788,(2000).
12. T. Hashizume, E. Alekseev, D. Pavlidisb, K. S. Boutros and J.Redwing, “Capacitance–Voltage Characterization of AlN/GaNMetal–Insulator–Semiconductor Structures Grown on Sapphire Substrate by Metalorganic Chemical Vapor Deposition”, J. Appl.Phys., 88, 1983 ,(2000).
13. D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho,and D. H. Shin and C. H. Lee and K. S. Chung, “GaNMetal–Oxide–Semiconductor Structures Using Ga-oxide DielectricsFormed by Photoelectrochemical Oxidation”, Appl. Phys. Lett.,80, 446 ,(2002)
14. T. S. Lay, W. D. Liu, M. Hong, J. Kwo and J. P. Mannaerts, “C-V and G-V Characterization of Ga2O3(Gd2O3)/GaN Capacitor with Low Interface State Density”, Electronics Letters, 37, 595,(2001)
第二章
1. S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, “Processing, defects, and devices” J. Appl. Phys. 86, 1 ,1,(1999)
2. T. Kozawa, T. Kachi, T. Ohwaki, Y. Taga, N. Koide, and M. Koike, J. Electrochem. Soc. (USA) ,143, 17 ,(1996)
3. J. I. Pankove, J. Electrochem.119, 1118 ,(1972)
4. M. Okubo, Jpn. J. Appl. Phys.36, 955 ,(1997)
5. C. Youtsey, I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., 712,151 (1997)
6. T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, and J. Graul, V. Schwegler, C. Kirchner, and M. Kamp, M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys.Lett., 76, 3923,(2000)
7. E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J.M.Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer”,Appl. Phys. Lett. , 68, 1678 ,(1996)
8. J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, and A. Wowchak, and H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett., 77, 1227, (2000)
9. Dieter K. Schroder,“Semiconductor Material and Device Characterization” 339
10. F. A. Ponce, “Group III Nitride Semiconductor Compounds Physics and
Applications”, pp.123-133, (1998).
11. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M.Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, andM. Stuzmann, “Two dimentional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, J. Appl. Phys., 87, 334 ,(2000)
12 . C. Shen, G. B. Gao, and H. Morkoc, “Recent Developments in Ohmic
Contacts to III-V Compound Semiconductors”, J. Vac. Sci. Tech. 10,
2113, (1992)
13 Patrick Roblin and Hans Rohdin, High-speed heterostructure devices:
From device concepts to circuit modeling, pp. 272-276, (2001).
第三章
1.譚偉文(Wei-WenTan) “ Investigation of Electrical Properties of Photoelectrochemistry Oxide Film Formation on n-type GaN MOSFETs”
成大微電子所碩士論文,(2005)
2. M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoc,
“Low resistance ohmic contacts on wide band-gap GaN”, Appl. Phys.
Lett., 64, 1003, (1994)
3. Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang and M. A.
Khan, “Study of contact formation in AlGaN/GaN heterostructures”,
Appl. Phys. Lett., 71, 1658, (1997)
4. C. T. Lee and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au
Ohmic contacts to n-type GaN”, Appl. Phys. Lett., 76, 2364 ,(2000)
第四章
1. H. C. Casey, Jr., G. G. Fountain and R. G. Alley, B. P. Keller and Steven P. DenBaars, “Low Interface Trap Density for Remote Plasma Deposited SiO2 on n-type GaN”, Appl. Phys. Lett., 68, 1850, (1996)
2. T. Hashizume, E. Alekseev, D. Pavlidisb, K. S. Boutros and J.Redwing, “Capacitance–Voltage Characterization of AlN/GaN Metal–Insulator–Semiconductor Structures Grown on SapphireSubstrate by Metalorganic Chemical Vapor Deposition”, J. Appl.Phys.,88,1983 (2000).
第五章
1. M. Asif Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor” ELECTRON DEVICE LETTERS, 21, (2000)
2. P. Kordoša, G. Heidelberger, J. Bernt, A. Fox, M. Marso, and H. Lth, “High-power SiO2 /AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors” Appl. Phys. Lett.,87, 143501, (2005)