| 研究生: |
徐碩亨 Hsu, Shuo-Heng |
|---|---|
| 論文名稱: |
以光化測站探討高屏地區VOCs貢獻源
及臭氧生成之影響 The sources of VOCs and their ozone formation potential for PAMS data in KP area |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 臭氧 、揮發性有機物 、光化學測站 、受體模式 、臭氧生成潛勢 |
| 外文關鍵詞: | ozone, VOCs, PAMS, receptor model, ozone formation potential |
| 相關次數: | 點閱:69 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來懸浮微粒之濃度藉由空氣污染管制已有顯著成效,因此臭氧逐漸取代懸浮微粒成為空氣品質不良之主要污染物。本研究使用環保署高屏地區光化學測站之2007年與2008年連續監測資料,以平均濃度、最大反應增量(MIR)及丙烯當量濃度三種不同方法探討高屏地區VOCs濃度及光化反應特性,而且應用受體模式之化學質量平衡法(CMB)與正矩陣因子法( PMF)推估高屏地區VOCs之污染源貢獻比例,與配合MIR分析高屏區VOCs主要貢獻源之臭氧生成潛勢。
以VOCs濃度而言,高屏地區之烷類、烯類、炔類及芳香烴類分別佔49~51%、9~13.5%、2~2.5%、33.5~39.5%,以toluene為最高,iso-pentane次之。以MIR及丙烯當量濃度而言,高屏地區芳香烴類為最多、其次為烯類、烷類,儘管烯類VOCs濃度較低,由於其光化反應性高,臭氧生成貢獻濃度之貢獻比例大於烷類。由CMB模式解析結果顯示小港站受到鄰近工業區之影響,以鋼鐵業、煉油業與油氣揮發為主;潮州站附近無明顯之工業排放源,VOCs主要來自於建材表面塗裝、二行程機車與汽車排放;橋頭站則以鋼鐵業、煉油業及建材表面塗裝為主要污染源。而PMF分析結果顯示在潮州站與橋頭站,VOCs主要的污染源有9個,而在小港站的主要VOCs污染源有7個,各污染源之貢獻比例與CMB模擬結果相近。
不同污染源以MIR推估臭氧生成潛勢結果顯示小港站之臭氧生成由鋼鐵業與移動源為主要臭氧貢獻源;潮州站為移動源與建材表面塗裝;橋頭站則以鋼鐵業、建材表面塗裝業與移動源為主。
In recent years, the major air pollutant responsible for PSI over 100 was ozone in KP air basin. In this study, the VOCs characteristics for PAMS data in KP area were evaluated by means of three indices: annual average mass concentrations, maximum incremental reactivity (MIR) and propylene-equivalent concentrations (Prop-equiv). Two different receptor models, chemical mass balance (CMB) and positive matrix factorization (PMF), were used to analyze the contributions of VOCs. Finally, MIR was used to evaluate ozone formation potential by various emission sources.
For mass concentration, the fractions of alkanes, alkenes, alkynes and aromatics are 49~51%, 9~13.5%, 2~2.5%, 33.5~39.5%, respectively; for chemical compositions, toluene is the dominant species. For MIR and Prop-equiv, aromatics are the greatest, followed by alkenes. Because of higher photochemical reactivity, alkenes have greater ozone formation potential than alkanes. The results of CMB analysis show that the major VOCs sources are steel industry, refinery, and gasoline vapor at Shian-Gang’s (SG). At Chao-Chou’s (CC), there are building surface coating, two-stroke motorcycle, and vehicle exhaust and are steel industry, refinery, and building surface coating at Chiau-Tou’s (CT). The results of PMF analysis reveal that there are 9 main VOCs sources at Chao-Chou and Chiau-Tou, and are 7 main sources at Shiau-Tou; the contribution from various sources are similar to those analyzed by CMB.
The main sources contributing the ozone formation potential by using MIR are steel industry and mobile source at SG, are mobile source and building surface coating in CC, and are steel industry and building surface coating at CT.
Atkinson R. “ Atmospheric chemistry of VOCs and NOx,” Atmospheric Environment, 2000, 34, 2063-2101.
Atkinson R. “ Gas-phase tropospheric chemistry of organic compounds,“ Atmospheric Environment, 2007, 41, S200-240.
Brown S.G., A. Frankel, and H.R. Hafer “ Source apportionment of VOCs in Los Angeles area using positive matrix factorization,” Atmospheric Environment, 2007, 41, 227-237.
Carter W.P.L. “ Development of ozone reactivity scales for volatile organic compounds,” Journal of the Air and Waste Management Association, 1994, 44, 881-899.
Derwent R.G. and M.E. Jenkin “ Hydrocarbons and the long range transport of ozone and PAN across Europe,” Atmospheric Environment, 1991, 25, 1661-1678.
Derwent R.G. “ Photochemical ozone creation potential for a large number of reactive hydrocarbons under European condition,” Atmospheric Environment, 1996, 30, 181-199.
Dimitriades B. “ Scientific basis for the voc reactivity issues raised by section 183(e) of the Clean Air Amendmnets of 1990,” Journal of the Air and Waste Management Association, 1996, 46, 963-970.
Doskey P.V., J.A. Porter, and P.A. Scheff “ Source fingerprints for volatile nonmethane hydrocarbons,” Journal of the Air and Waste Management Association, 1992, 42, 1437-1445.
Fujita E.M. and Z. Lu “ Analysis of data from the 1995 NARSTO-NORTHEAST study volume-III: chemical mass balance receptor modeling,” Energy and Environment Engineering Center, Desert Research Institute, P.O. Box 60220, Reno, NV 89506.
Greenberg J.P., A. Guenther, P. Zimmerman, W. Baugh, C. Geron, K. Davis, D. Helmig, L.F. Klinger “ Terhered ballon measurements of biogenic VOCs in the atmospheric boundary layer,” Atmospheric Environment, 1999, 33, 855-867.
Holland D.M., P.P. Principe, and J.E Sickles II “ Trends in atmospheric sulfur and nitrogen species in the eastern United States for 1989-1995,” Atmospheric Environment, 1998, 33,37-49.
Hsieh C.C. and J.H. Tsai “ VOC concentration characteristics in Southern Taiwan,” Chemosphere, 2003, 50, 545-556.
Kim E., T.V. Larson, P.K. Hopke, C. Slaughter, L.E. Sheppard, C. Claiborn “ Source identification of PM2.5 in an arid Northwest U.S. city by positive matrix factorization,” Atmospheric Research, 2003, 66, 291-305.
Liu Y., M. Shao, L. Fu, S. Lu, L. Zeng, D. Tang “ Source profiles of volatile organic compounds(VOCs) measured in China: Part I,“ Atmospheric Environment, 2008, 42, 6247-6260.
Milford J.B., A.G. Russell, and G.J. McRae “A new approach to photochemical pollution control: implications of spatial patterns in pollutant responses to reductions in nitrogen oxides andreactive organic gas emissions,” Environmental Science & Technology, 1989, 23, 1290-1301.
Na K., Y.P. Kim, I. Moon, K. Moon “ Chemical composition of major VOC emission sources in the Seoul atmosphere,” Chemosphere, 2004, 55, 585-594.
Na K., and Y.P. Kim “Chemical mass balance receptor model applied to ambient C2-C9 VOC concentration in Seoul, Korea: effect of chemical reaction losses,” Atmospheric Environment, 2007, 41, 6715-6728.
Paatero P. “ Least squares formulation of robust nonnegative factor analysis,” Chemometrics and Intelligent Laboratory Systems, 1997, 38, 223-242.
Paatero P. and U. Tapper “ Analysis of different modes of factor-analysis as least-squares fit problems,” Chemometrics and Intelligent Laboratory Systems, 18, 183-194.
Possiel N.C. and W.M. Cox “ The relative effectiveness of NOx and VOC strategies in reducing northeast U.S. ozone concentrations,” Water, Air, and Soil Pollution, 1993, 67, 161-179.
Rogak S.N., U. Pott, T. Dann, D. Wang “ Gaseous emissions from vehicles in a traffic tunnel in Vancouver, British Columbia,” Hournal of the Air and Waste Management Association, 1998, 48, 604-615.
Wadden R.A.,I. Uno, and S. Wakamatsu “ Source disceimination of short-term hydrocarbon samples measured aloft,” Environmental Science & Technology, 1986, 20, 473-483.
Watson J.G., J.C. Chow, and E.M. Fujita “ Review of volatile organic compound source apportionment by chemical mass balance,” Atmospheric Environment, 2001, 35, 1567-1584.
Scheff P.A., R.A. Wadden, B.A. Bates, P.F. Aronian “ Source fingerprints for receptor modeling of volatile organics,” JAPCA the Journal of the Air and Waste Management Association, 1989, 39, 469-478.
Schurmann G., K. Schafer, C. John, H. Hoffmann, M. Bauerfeind, E. Fleuti, B. Rappengluck “ The impact of NOx, CO and VOC emissions on the air qoality of Zurich airport,” Atmospheric Environment, 2007, 41, 103-118.
Sexton K. and H. westberg “ Ambient hydrocarbon ozone measurement downwind of a large automotive painting plant,” Environmental Science & Technology, 1980, 14, 329-332.
Sigsby J.E., S. Tejada, W. Ray, J.M. Lang, J.W. Duncan “ Volatile organic compound emission from 46 in-use passenger cars,” Environmental Science & Technology, 1987, 21, 466-475.
Tsai J.H.,Y.C. Hsu, H.C. Weng, W.Y. Lin, F.T. Jeng “ Air pollutant emission factors from new and in-use motorcycles,” Atmospheric Environment, 2000, 34,4747-4754.
Tsai J.H.,K.H. Lin, C.Y. Chen, N. Lai, S.Y. Ma, H.L. Chiang “ Volatile organic compound constituent from an integrated iron and steel facility,” Journal of Hazardous Materials, 2008, 157, 569-578.
U.S. EPA “ EPA-CMB8.2 user manual,” report number EPA-452/R-04-011, Office of Air Quality Planning and Standards, Research Triangle Park, NC, 2004.
U.S. EPA “ EPA postivite matrix factorization(PMF) 3.0 fundamentals & user guide,” report number EPA-600/R-08/108, National Exposure Research Laboratory, Research Triangle Park, NC 27711, 2008.
Vega E., V. Mugica, R. Carmona, E. Valencia “ Hydrocarbon source apportionment in Mexico city using the chemical mass balance receptor model,” Atmospheric Environment, 2000, 34, 4121-4129.
Yu T.Y. and L.F.W. Chang “ Selection of the scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis,” Atmospheric Environment, 2000, 34, 4499-4509.
Zheng J., M. Shao., W. Che, L. Zhang, L. Zhong, Y. Zhang, D. Streets “ Speciated VOC emission inventory and spatial patterns of ozone formation potential in Pearl River Delta, China,” Environmental Science & Technology, 2009, 43, 8580-8586.
中鼎工程公司,『石油化學工業空氣污染管制規範研訂計畫』,行政院環保署,1992。
翁閎政,『機車排氣之揮發性有機物特徵及光化反應性研究』,國立成功大學環境工程研究所碩士論文,1998。
羅卓卿,『油品儲運站鄰近空氣中揮發性有機污染物之特性研究』,國立中山大學環境工程研究所碩士論文,2001。
陳木麟,『運用CMB模式配合分析與調查探討都會區之碳氫化合物來源』,逢甲大學環境工程與科學學系碩士論文。
吳立言,『高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討』,國立中山大學環境工程研究所碩士論文,2002。
呂佩真,『高雄市臭氧敏感物種與光化指標之研究探討(2002-2003)』,國立中山大學環境工程研究所碩士論文,2003。
彭彥彬,『屏東地區臭氧敏感物種與光化指標之研究探討(2002-2003)』,國立中山大學環境工程研究所碩士論文,2003。
中央研究院環境變遷研究中心,『我國臭氧及其前驅物長期變化觀測誠因分析』,行政院環保署,2005。
行政院環保署,『揮發性有機物空氣污染管制及排放標準』, 2005。
周明顯,『拜香及爆竹產生空氣污染物之減量及危害評估-子計畫一:燃燒金紙及拜香產生空氣污染物成分分析及排放量推估』,行政院環保署/國科會空污防制科研計畫,2006。
張能復,魏永昌,『台灣地區近五年臭氧污染現況的統計與事件分析』,中華民國環境工程學會2006空氣污染控制技術研討會,2006。
梁志鋒,『受體模式CMB與PMF之比較與驗證』,國立中興大學環境工程研究所碩士論文,2006。
楊慈定、余俊賢、楊天愿、劉修誠、張寶額、張瑞琪,『拜香然菸所產生揮發性有機污染物排放特性』,中華民國環境工程學會2006空氣污染控制研討會,2006。
顏有利、林文印、邱顯文,『八卦山隧道發發性有機物排放特性分析』,中華民國環境工程學會2006空氣污染控制研討會,2006。
游智淵,『第三代台灣地區生物源空氣污染物排放量推估模式之建立與應用』,國立雲林科技大學環境與工程安全研究所碩士論文,2003。
吳義林、林清和、賴進興、賴信志、林博雄、蔡德明,『高屏地區氣象與空氣品質三度空間觀測與分析』,行政院環保署,2007。
陳佳玲,『石化工業區VOCs物種及排放量推估』,輔英科技大學環境工程與科學系碩士論文,2007。
逢甲大學幻境工程與科學學系,『96年度台中市懸浮微粒與碳氫化合物來源、成分與傳輸、貢獻量之調查與管制計畫』,台中市環境保護局,2007。
行政院環保署,『97年台灣地區空氣污染防治總檢討』,2008。
行政院環保署,『中華民國空氣品質監測報告97年年報』,2008。
吳修旻,『南台灣空氣品質長期趨勢分析』國立成功大學環境工程研究所碩士論文,2009。
劉鎧銘,『嘉義地區揮發性有機物來源及其臭氧生成潛勢』,國立成功大學環境工程所碩士論文,2009。
行政院環保署空氣品質監測網,http://taqm.epa.gov.tw/taqm/zh-tw/。