| 研究生: |
張仍奎 Chang, Jeng-Kuei |
|---|---|
| 論文名稱: |
超高電容器錳氧化物電極之電化學製備法、材料特性以及擬電容行為 Preparation, material characteristics, and pseudo-capacitive properties of the manganese oxides used in super-capacitors |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 221 |
| 中文關鍵詞: | 擬電容特性 、超高電容器 、錳氧化物 |
| 外文關鍵詞: | pseudo-capacitive property, manganese oxide, super-capacitor |
| 相關次數: | 點閱:63 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中利用陽極沈積法於醋酸錳水溶液中製備出具有優異擬電容行為的錳氧化物電極材料,而製程中的陽極化電位(0.5~0.95VSCE)、鍍液溫度(0~50oC)以及濃度(0.05~1M)均被證實對所製備氧化物的性質有重要的影響。另外,後熱處理溫度(100~700oC,持溫兩小時)對氧化物電極各種材料特徵及電化學性質的關係也被詳細而有系統地探討。實驗中並嘗試以陽極沈積法為基礎製作氧化物/碳複合材料電極,以求能進一步提升電極的比電容值、動力學反應特性以及循環充放電穩定性。
分析結果發現陽極沈積物質乃由(三價與四價)氧化錳、氫氧化錳以及結構水所組成;且由於低結晶性、高孔隙度與高表面積等材料性質,使其於中性氯化鉀水溶液能表現出理想的擬電容行為,相當適合作為超高電容器的電極材料。高含水量以及均勻細緻的奈米纖維網狀結構是電極欲達到高比電容值最重要的兩個條件,而這樣的材料特性可藉由降低陽極沈積製程的電位與溫度,並適當地控制鍍液濃度(約0.5M)來獲得。在1.5庫侖的陽極沈積電量下(氧化層厚度約為3~4 μm),錳氧化物電極的比電容值可高達240 F/g,或290 mF/cm2。
200oC以下的熱處理有助提升氧化物電極的電容特性。隨著其中水分子以及有機物質被驅除、表面粗糙度增加,以及奈米微晶粒的結晶程度變佳,雖然電極的比電容值稍微降低但其快速充放電能力與電化學穩定性均有明顯改善。當熱處理溫度繼續提高,會促使氧化物的形貌產生重新排列,奈米纖維狀結構被破壞,並在局部區域開始出現Mn3O4與Mn2O3的結晶相,而使電極的擬電容特性發生退化。當溫度達500oC時,氧化物進行全面性的結晶化反應並伴隨氧氣的釋出,而高結晶性氧化錳的出現將使電極完全喪失其擬電容特性。
以陽極沈積法為基礎能製備得到多層氧化物/碳複合電極以及共沈積氧化物/碳複合電極。碳粉的添加能增加電極表面積並提高其電子及離子導電性,因此使兩複合電極均擁有比單純氧化物電極更加理想的擬電容特性以及更長的循環充放電使用壽命。在高電位掃瞄速度(150 mV/sec)的循環伏安測試條件下,複合電極的比電容值比單純氧化物者高約30%。
The manganese oxide electrodes with promising pseudo-capacitive behavior were successfully prepared by anodic deposition in manganese acetate solutions. Anodic potential (0.5-0.95VSCE), temperature (0-50oC), and electrolyte concentration (0.05-1M) were found to significantly influence the properties of the deposited manganese oxide. In addition, effects of heat treatment (100-700oC for two hours) on material characteristics and electrochemical properties of the manganese oxide electrodes were investigated. This study also attempted to manufacture manganese oxide/carbon composite electrodes based on the anodic deposition process. The improvements of specific capacitance, high power capability, and cyclic stability of manganese oxide electrodes due to carbon addition were explored as well.
The experimental results indicated that the anodically deposited material was composed of (trivalent and tetravalent) manganese oxide, manganese hydroxide, and structural water. Moreover, based on its nature of poor crystallinity, high porosity, and high surface area, the deposited oxide electrode exhibited ideal pseudo-capacitive performance and was considered to be promising electrode material for a super-capacitor. High water content and uniformly fine network structure of nano-fiber oxide were confirmed to be the two most important factors that led the manganese oxide to high specific capacitance. However, these kinds of material characteristics were preferably obtained at both low deposition potential and temperature and accompanied by appropriate concentration (around 0.5M) of manganese acetate plating electrolyte. Under the condition of 1.5C total passed anodic charge (the deposit was 3-4 μm in thickness), the optimum specific capacitance of the electrode was 240 F/g or 290 mF/cm2.
Heat treatment below 200oC was found to enhance capacitive performance of manganese oxide electrodes. As structural water and organic matter were released by heating, surface roughness and nano-crystallinity of the manganese oxide simultaneously increased. Accordingly, high rate charge/discharge property and cyclic stability of the electrode were significantly improved, though its specific capacitance was slightly sacrificed. Further increasing annealing temperature beyond 200oC caused the re-arrangement of the oxide to occur. However, distortion of the nano-fiber network structure and appearance of crystal Mn3O4 and Mn2O3 phases in local areas caused degradation of the pseudo-capacitive performance for the oxide electrode. Complete crystallization, accompanying an oxygen release reaction, of the deposited oxide occurred around 500oC. Total loss of capacitive characteristics resulting from the formation of highly crystalline oxide was confirmed for the oxide electrode treated at temperatures above 500oC.
Two kinds of manganese oxide/carbon composite electrodes, including multilayer and co-deposition composite materials, were successfully prepared based on the anodic deposition process. Also, addition of carbon powder was found to increase surface area, porosity, and conductivity of the manganese oxide. Therefore, the specific capacitances, evaluated by cyclic voltammetry at a scan rate of 150 mV/sec, of the composite electrodes were 30% higher than that of a plain oxide electrode. Moreover, cyclic stability of the electrodes was promoted by carbon adding as well.
[1] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45 (2000) 2483.
[2] E. Conway, Electrochemical Super capacitors, Kluwer-Plenum, New York (1999).
[3] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources, 91 (2000) 37.
[4] B. E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, J. Electrochem. Soc., 138 (1991) 1539.
[5] I. D. Raistrick, Electrochemistry in Electronics, Noyes Publications, Park Ridge, NJ (1995).
[6] S. Trasatti, P. Kurzweil, Platinum Met. Rev., 38 (1994) 46.
[7] A. F. Burke, T. C. Murphy, Material characteristics and the performance of electrochemical capacitors for electric/hybrid vehicle applications, Mater. Res. Soc. Symp. Proc., 393 (1995) 375.
[8] S. Sarangapani, B. V. Tilak, C. P. Chen, Materials for electrochemical capacitors, J. Electrochem. Soc., 143 (1996) 3791.
[9] G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, J. L. Morris, Operating principles of the ultracapacitor, IEEE Trans. Magnet., 25 (1989) 102.
[10] J. P. Zheng, J. Huang, T. R. Jow, The limitations of energy density for electrochemical capacitors, J. Electrochem. Soc., 144 (1997) 2026.
[11] E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, H. Kahlen, Supercapacitors for the energy management of electric vehicles, J. Power Sources, 84 (1999) 261.
[12] R. A. Huggins, Supercapacitors and electrochemical pulse sources, Solid State Ionics, 134 (2000) 179.
[13] M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda, Electric double-layer capacitor composed of activated carbon-fiber cloth electrodes and solid polymer electrolytes containing alkylammonium salts, J. Electrochem. Soc., 141 (1994) 1730.
[14] B. Pillay, J. Newman, The influence of side reactions on the performance of electrochemical double-layer capacitors, J. Electrochem. Soc., 143 (1996) 1806.
[15] S. Sarangapani, P. Lessner, J. Forchione, A. Griffith, A. B. Laconti, Advanced double-layer capacitors, J. Power Sources, 29 (1990) 355.
[16] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double-layer capacitor using organic electrolyte, J. Power Sources, 60 (1996) 239.
[17] D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources, 74 (1998) 99.
[18] I. Tanahashi, A. Yoshida, A. Nishino, Preparation and characterization of activated carbon tablets for electric double-layer capacitors, Bull. Chem. Soc. Jpn., 63 (1990) 2755.
[19] J. P. Zheng, T. R. Jow, A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc., 142 (1995) L6.
[20] J. P. Zheng, P. J. Cygan, T. R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 142 (1995) 2699.
[21] Y. Takasu, T. Nakamura, H. Ohkawauchi, Y. Murakami, Dip-coated Ru-V oxide electrodes for electrochemical capacitors, J. Electrochem. Soc., 144 (1997) 2601.
[22] K. Rajendra Prasad, N. Munichandraiah, Potentiodynamically deposited polyaniline on stainless steel – Inexpensive, high-performance electrodes for electrochemical capacitors, J. Electrochem. Soc., 149 (2002) A1393.
[23] M. Mastragostino, C. Arbizzani, F. Soavi, Polymer-based supercapacitors, J. Power Sources, 97-98 (2001) 812.
[24] C. Arbizzani, M. Mastragostino, F. Soavi, New trends in electrochemical supercapacitors, J. Power Sources, 100 (2001) 164.
[25] K. K. Liu, M. A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc., 143 (1996) 124.
[26] V. Srinivasan, J. W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors, J. Electrochem. Soc., 144 (1997) L210.
[27] C. Lin, J. A. Ritter, B. N. Popov, Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors, J. Electrochem. Soc., 145 (1998) 4097.
[28] T. C. Liu, W. G. Pell, B. E. Conway, Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance, Electrochim. Acta, 44 (1999) 2829.
[29] H. Y. Lee, J. B. Goodenough, Ideal supercapacitor behavior of amorphous V2O5‧nH2O in potassium chloride (KCl) aqueous solution, J. Solid State Chem., 148 (1999) 81.
[30] V. Srinivasan, J. W. Weidner, Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration, J. Electrochem. Soc., 147 (2000) 880.
[31] Y. U. Jeong, A. Manthiram, Amorphous ruthenium-chromium oxides for electrochemical capacitors, Electrochem. Solid State Letters, 3 (2000) 205.
[32] H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, Y. S. Yoon, Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors, J. Power Sources, 102 (2001) 167.
[33] K. W. Nam, K. B. Kim, A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism, J. Electrochem. Soc., 149 (2002) A346.
[34] K. W. Nam, W. S. Yoon, K. B. Kim, X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors, Electrochim. Acta, 47 (2002) 3201.
[35] W. Sugimoto, T. Shibutani, Y. Murakami, Y. Takasu, Charge storage capabilities of rutile-type RuO2-VO2 solid solution for electrochemical supercapacitors, Electrochem. Solid State Letters, 5 (2002) A170.
[36] C. C. Hu, C. Y. Cheng, Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition, Electrochem. Solid State Letters, 5 (2002) A43.
[37] A. Bai, C. C. Hu, Effects of electroplating variables on the composition and morphology of nickel-cobalt deposits plated through means of cyclic voltammetry, Electrochim. Acta, 47 (2002) 3447.
[38] N. L. Wu, Nanocrystalline oxide supercapacitors, Mater. Chem. Phys., 75 (2002) 6.
[39] N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu, L. R. Shiue, Electrochemical capacitor of magnetite in aqueous electrolytes, J. Power Sources, 113 (2003) 173.
[40] S. Y. Wang, N. L. Wu, Operating characteristics of aqueous magnetite electrochemical capacitors, J. Applied Electrochem., 33 (2003) 345.
[41] K. R. Prasad, N. Miura, Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors, Electrochem. Comm., 6 (2004) 849.
[42] K. R. Prasad, N. Miura, Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode, Appl. Phys. Lett., 85 (2004) 4199.
[43] J. Jiang, A. Kucernak, Electrochemical supercapacitor material based on manganese oxide: preparation and characterization, Electrochim. Acta, 47 (2002) 2381.
[44] X. M. Liu, X. G. Zhang, NiO-based composite electrode with RuO2 for electrochemical capacitors, Electrochim. Acta, 49 (2004) 229.
[45] R. J. Brodd, K. R. Bullock, R. A. Leising, R. L. Middaugh, J. R. Miller, E. Takeuchi., Batteries,1977 to 2002, J. Electrochem. Soc., 151 (2004) K1.
[46] C. F. Farahmandi, E. Blank, D. Hileman, J. Dispennette, K. Lambert, in Proceedings of The 36th Power Sources Conference, Cherry Hill, NJ (1994).
[47] D. R. Craig, Can. Pat., 1,196,683 (1985).
[48] S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic, B. E. Conway, Reversibility and growth behavior of surface oxide films at ruthenium electrodes, J. Electrochem. Soc., 125 (1978) 1471.
[49] S. Trasatti, G. Buzzanca, J. Electroanal. Chem., 29 (1971) 1.
[50] D. Galizzioli, F. Tantardini, S. Trasatti, Ruthenium dioxide: A new electrode material em dash I. Behaviour in acid solutions of inert electrolytes, J. Appl. Electrochem., 4 (1974) 57.
[51] T. Liu, W. G. Pell, B. E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochim. Acta, 42 (1997) 3541.
[52] I. H. Kim, K. B. Kim, Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism, J. Electrochem. Soc., 151 (2004) E7.
[53] T. R. Jow, J. P. Zheng, Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide, J. Electrochem. Soc., 145 (1998) 49.
[54] I. D. Raistrick, in The Electrochemistry of Semiconductors and Electronics-Processes and Device, p. 297, J. McHardy, F. Luduig, Editors, Noyes, Park Ridge, NJ (1992).
[55] S. Trasatti, G. Lodi, in Electrodes of Conductive Metallic Oxides - Part A, p. 301, S. Trasatti, Editor, Elsevier, New York (1980).
[56] CRC Handbook of Chemistry and Physics, 71st ed., D. R. Lide, Editor, CRC Press, Boca Raton, FL (1984).
[57] D. Michell, D. A. J. Rand, R. Woods, J. Electroanal. Chem., 89 (1978) 11.
[58] L. D. Burk, O. J. Murphy, J. F. O’Neill, S. Venkatesan, J. Chem. Soc., Faraday Trans. I, 23 (1977) 1659.
[59] H. B. Sierra-Alcazar, K. A. Kern, G. E. Mason, R. Tong, in Proceedings of the 33rd Power Source Symposium, p. 607, Cherry Hill, NJ (1988).
[60] K. Doblhofer, M. Metikos, Z. Ognmi, H. Gerischer, Electrochemical oxidation and reduction of the RuO2/Ti electrode surface, Ber. Bunsenges. Phys. Chem., 82 (1978) 1046.
[61] S. Sarangapani, J. Forchione, A. Griffith, A. La-Conti, in Proceedings of The Second International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Beerfield Beach, FL (1991).
[62] D. V. Kokoulina, T. V. Ivanova, Y. I. Kroasovitskaya, Z. I. Kudryartseva, L. I. Krishtalik, Charging of ruthenium oxide-titanium oxide electrodes and their true surface area, Electrokhim., 13 (1977) 1511.
[63] J. T. Sommerfeld, G. Parravano, J. Phys. Chem., 69 (1965) 102.
[64] I. D. Raistrick, R. T. Sherman, in Proceedings of The Second Symposium on Electrode Materials and Processes for Energy Conversion and Storage, p. 583, S. Srinivasan, S. Wagner, H. Wroblowa, Editors, The Electrochemical Society Proceedings Series, PV 87-12, Pennington, NJ (1987).
[65] J. P. Zheng, T. R. Jow, Q. X. Jia, X. D. Wu, Proton insertion into ruthenium oxide film prepared by pulsed laser deposition, J. Electrochem. Soc., 143 (1996) 1068.
[66] B. E. Conway, in Proceedings of The Second International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Beerfield Beach, FL (1992).
[67] J. K. Chang, C. M. Liao, C. H. Chen, W. T. Tsai, Microstructure and electrochemical characteristics of aluminum anodized film formed in ammonium adipate solution, J. Electrochem. Soc., 150 (2003) B266.
[68] Q. L. Fang, D. A. Evans, S. L. Roberson, J. P. Zheng, Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc., 148 (2001) A833.
[69] J. P. Zheng, T. R. Jow, High energy and high power density electrochemical capacitors, J. Power Sources, 62 (1996) 155.
[70] R. Fu, Z. Ma, J. P. Zheng, Proton NMR and dynamic studies of hydrous ruthenium oxide, J. Phys. Chem. B, 106 (2002) 3592.
[71] H. Y. Lee, V. Manivannan, J. B. Goodenough, Electrochemical capacitors with KCl electrolyte, Comptes Rendus Chimie, 2 (1999) 565.
[72] R. N. Reddy, R. G. Reddy, MnO2 as electrode material for electrochemical capacitors, Electrochemical Society Proceeding, PV 2002-7 (2002) 197.
[73] S. Bach, J. P. Pereira-Ramos, N. Baffier, Synthesis and characterization of lamellar MnO2 obtained from thermal decomposition of NaMnO4 for rechargeable lithium cells, J. Solid State Chem., 120 (1995) 70.
[74] H. Y. Lee, J. B. Goodenough, Supercapacitor behavior with KCl electrolyte, J. Solid State Chem., 144 (1999) 220.
[75] H. Kim, Branko N. Popov, Synthesis and characterization of MnO2-based mixed oxides as supercapacitors, J. Electrochem. Soc., 150 (2003) D56.
[76] H. Y. Lee, S. W. Kim, H. Y. Lee, Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode, Electrochem. Solid State Letters, 4 (2001) A19.
[77] C. Tsang, J. Kim, A. Manthiram, Synthesis of manganese oxides by reduction of KMnO4 with KBH4 in aqueous solutions, J. Solid State Chem., 137 (1998) 28.
[78] Y. U. Jeong, A. Manthiram, Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes, J. Electrochem. Soc., 149 (2002) A1419.
[79] R. N. Reddy, R. G. Reddy, Sol-gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources, 124 (2003) 330.
[80] R. N. Reddy, R. G. Reddy, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J. Power Sources, 132 (2004) 315.
[81] S. C. Pang, M. A. Anderson, T. W. Chapman, Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide, J. Electrochem. Soc., 147 (2000) 444.
[82] S. C. Pang, M. A. Anderson, Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films, J. Mater. Res., 15 (2000) 2096.
[83] S. F. Chin, S. C. Pang, M. A. Anderson, Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors, J. Electrochem. Soc., 149 (2002) A379.
[84] M. Wu, G. A. Snook, G. Z. Chen, D. J. Fray, Redox deposition of manganese oxide on graphite for supercapacitors, Electrochem. Comm., 6 (2004) 499.
[85] J. N. Broughton, M. J. Brett, Electrochemical capacitance in manganese thin films with chevron microstructure, Electrochem. Solid State Letters, 5 (2002) A279.
[86] B. Djurfors, J. N. Broughton, M. J. Brett, D. G. Ivey, Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications, J. Mater. Sci., 38 (2003) 4817.
[87] J. N. Broughton, M. J. Brett, Investigation of thin sputtered Mn films for electrochemical capacitors, Electrochim. Acta, 49 (2004) 4439.
[88] S. Kuwabata, A. Kishimoto, T. Tanaka, H. Yoneyama, Electrochemical synthesis of composite films of manganese-dioxide and polypyrrole and their properties as an active material in lithium secondary batteries, J. Electrochem. Soc., 141 (1994) 10.
[89] J. P. Pohl, S. Atlung, Equilibria of electrode-potentials of MeO2HX(YH2O) electrodes. I. Thermodynamics, Electrochim. Acta, 31 (1986) 391.
[90] G. H. A. Therese, P. V. Kamath, Electrochemical synthesis of metal oxides and hydroxides, Chem. Mater., 12 (2000) 1195.
[91] M. Ghaemi, Z. Biglari, L. Binder, Effect of bath temperature on electrochemical properties of the anodically deposited manganese dioxide, J. Power Sources, 102 (2001) 29.
[92] M. Ghaemi, L. Binder, Effects of direct and pulse current on electrodeposition of manganese dioxide, J. Power Sources, 111 (2002) 248.
[93] M. Ghaemi, R. K. Ghavami, L. Khosravi-Fard, M. Z. Kassaee, Electrolytic MnO2 via non-isothermal electrode heating: a promising approach for optimizing performances of electroactive materials, J. Power Sources, 125 (2004) 256.
[94] C. C. Hu, T. W. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem. Comm., 4 (2002) 105.
[95] J. K. Chang, W. T. Tsai, Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors, J. Electrochem. Soc., 150 (2003) A1333.
[96] J. K. Chang, W. T. Tsai, Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution, J. Appl. Electrochem., 34 (2004) 953.
[97] C. C. Hu, C. C. Wang, Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition, J. Electrochem. Soc., 150 (2003) A1079.
[98] C. C. Hu, T. W. Tsou, The optimization of specific capacitance of amorphous manganese oxide for electrochemical capacitors using experimental strategies, J. Power Sources, 115 (2003) 179.
[99] Y. S. Chen, C. C. Hu, Y. T. Wu, Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: effects of manganese precursors and oxide thickness, J. Solid State Electrochem., 8 (2004) 467.
[100] Y. T. Wu, C. C. Hu, Effects of electrochemical activation and multiwall carbon nanotubes on the capacitive characteristics of thick MnO2 deposits, J. Electrochem. Soc., 151 (2004) A2060.
[101] M. S. Wu, P. C. J. Chiang, Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors, Electrochem. Solid State Letters, 7 (2004) A123.
[102] K. R. Prasad, N. Miura, Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors, Electrochem. Comm., 6 (2004) 1004.
[103] K. R. Prasad, N. Miura, Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors, J. Power Sources, 135 (2004) 354.
[104] M. Nakayama, S. Konishi, H. Tagashira, K. Ogura, Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions, Langmuir, 21 (2005) 354.
[105] S. Rodrigues, N. MuniChandraish, A. K. Shukla, A cyclic voltammetric study of the kinetics and mechanism of electrodeposition of manganese dioxide, J. Appl. Electrochem., 28 (1998) 1235.
[106] M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aquesous electrochemical capacitor, Chem. Mater., 16 (2004) 3184.
[107] S. Wen, J. W. Lee, I. H. Yeo, J. Park, S. I. Mho, The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2, Electrochim. Acta, 50 (2004) 849.
[108] Y. Marcus, Ion Properties, Marcel Dekker, New York (1997).
[109] J. A. Dean, Lange’s Handbook of Chemistry, 14th ed., McGRAW-HILL, 1992.
[110] M. Toupin, T. Brousse, D. Bélanger, Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide, Chem. Mater., 14 (2002) 3946.
[111] C. C. Hu, T. W. Tsou, Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition, Electrochim. Acta, 47 (2002) 3523.
[112] J. K. Chang, Y. L. Chen, W. T. Tsai, Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition, J. Power Sources, 135 (2004) 344.
[113] J. K. Chang, W. T. Tsai, The microstructure and pseudo-capacitive performance of anodically deposited manganese oxide with various heat treatments, accepted by J. Electrochem. Soc., 2005.
[114] A. I. Beliakov, A. M. Brintsev, in Proc. 7th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Education Seminars (1997).
[115] J. P. Zheng, Ruthenium oxide-carbon composite electrodes for electrochemical capacitors, Electrochem. Solid State Lett., 2 (1999) 359.
[116] J. H. Jang, S. Han, T. Hyeon, S. M. Oh, Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes, J. Power Sources, 123 (2003) 79.
[117] C. C. Hu, W. C. Chen, K. H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc., 151 (2004) A281.
[118] W. C. Chen, C. C. Hu, C. C. Wang, C. K. Min, Electrochemical characterization of activated carbon-ruthenium oxide nanoparticles composites for supercapacitors, J. Power Sources, 125 (2004) 292.
[119] T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe, K. Kajita, Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes, Solid State Ionics, 152-152 (2002) 833.
[120] J. H. Park, O. O. Park, K. H. Shin, C. S. Jin, Jong Huy Kim, An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode, Electrochem. Solid State Letters, 5 (2002) H7.
[121] W. Sugimoto, T. Ohnuma, Y. Murakami, Y. Takasu, Molybdenum oxide/carbon composite electrodes as electrochemical supercapacitors, Electrochem. Solid State Letters, 4 (2001) A145.
[122] T. Brousse, M. Toupin, D. Bélanger, A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem. Soc., 151 (2004) A614.
[123] E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, F. Beguin, Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc., 152 (2005) A229.
[124] J. K. Chang, C. T. Lin, W. T. Tsai, Manganese oxide/carbon composite electrodes for electrochemical capacitors, Electrochem. Comm., 6 (2004) 666.
[125] A. J. Bard, L. R. Faulkner, Electrochemical Method - Fundamentals and Applications, John Wiley & Sons, New York (1980).
[126] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers, Houston, Texas, USA (1966).
[127] B. R. Strohmeier, D. M. Hercules, J. Phys. Chem., 88 (1984) 4922.
[128] B. N. Ivanov-Emin, N. A. Nevskaya, B. E. Zaitsev, T. M. Ivanova, Zh. Neorg. Khim., 27 (1982) 3101.
[129] M. Chigane, M. Ishikawa, Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism, J. Electrochem. Soc., 147 (2000) 2246.
[130] M. Chigane, M. Ishikawa, M. Izaki, Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism, J. Electrochem. Soc., 148 (2001) D96.
[131] A. Era, Z. Takehara, S. Yoshizawa, Discharge mechanism of manganese dioxide electrode, Electrochim. Acta, 12 (1967) 1199.
[132] D. Briggs, J. C. Riviere, in Practical Surface Analysis, p. 128, Vol. 2, 2nd ed., edited by D. Briggs, M. P. Seah, John Wiley & Sons, Chichester (1990).
[133] J. C. Carver, G. K. Schweitzer, T. A. Carlson, J. Chem. Phys., 57 (1972) 973.
[134] M. Oku, K. Hirokawa, S. Ikeda, J. Electron Spectrosc. Relat. Phenom., 7 (1975) 465.
[135] E. Preisler, Semiconductor properties of manganese dioxide, J. Appl. Electrochem., 6 (1976) 311.
[136] H. Ikeda, U.S. Patent, 4,133,856.
[137] P. Ruetschi, R. Giovanoli, Cation vacancies in MnO2 and their influence on electrochemical reactivity, J. Electrochem. Soc., 135 (1988) 2663.
[138] E. M. Otto, Equilibrium pressures of oxygen over MnO2-Mn2O3 at various temperatures, J. Electrochem. Soc., 112 (1965) 367.
[139] A. N. Grundy, B. Hallstedt, L. J. Gauckler, Assessment of the Mn-O system, J. Phase Equilibria, 24 (2003) 21.
[140] S. B. Kanungo, K. M. Parida, B. R. Sant, Studies on MnO2 -- 2. relationship between physico-chemical properties and electrochemical activity of some synthetic MnO2 of different crystallographic forms, Electrochim. Acta, 26 (1981) 1147.
[141] T. C. Weng, H. Teng, Characterization of high porosity carbon electrodes derived from mesophase pitch for electric double-layer capacitors, J. Electrochem. Soc., 148 (2001) A368.
[142] C. C. Hu, W. C. Chen, Effects of substrates on the capacitive performance of RuOx‧nH2O and activated carbon-RuOx electrodes for supercapacitors, Electrochim. Acta, 49 (2004) 3469.