簡易檢索 / 詳目顯示

研究生: 陳心怡
Chen, Hsin-Yi
論文名稱: 阿拉伯芥液胞膜上的SWEETs轉運蛋白其功能以及調控
The function and regulation of vacuolar SWEETs in Arabidopsis
指導教授: 郭瑋君
Guo, Woei-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: SWEET液胞糖轉運蛋白FructoseGalactoseGlucose根腐病菌(Pythium)
外文關鍵詞: SWEET, vacuole, sugar transport, Fructose, Galactose, Glucose, Pythium
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物行光合作用產生的碳水化合物除了運送到各個所需組織外,有些醣類會從根分泌出去導致喪失,但根部醣類分泌的機制尚未被了解的很透徹,目前已知SWEET轉運蛋白在醣輸出機制中扮演重要的角色於本研究中,利用(qRT)-PCR分析阿拉伯芥的所有組織顯示出SWEET16以及SWEET17在根部具有較高的表現量,藉由報導基因 (ß-Glucoronidase) 的轉植株,不論是轉錄還是轉譯的層次也顯示出SWEET16以及SWEET17主要表現在根部。藉由融合上報導螢光基因 (Green Fluorescence Protein) 表現在阿拉伯芥上,觀察SWEET16以及SWETT17其細胞內表現的位置,發現SWEET16以及SWETT17主要表現在液胞膜上。當處理醣類的逆境時,SWEET17會受到缺醣,如黑暗處理及受傷,或者醣毒害, 如1% Fructose及 5 mM Galactose等誘導表現。而這些處理皆可導致液胞膜中的醣的釋放或Fructose累積,顯示SWETT17與液胞Fructose的調節有關,同時在處理醣類的逆境時,並不會改變細胞的表現位置,仍主要表現在液胞膜上。給予高濃度的Fructose時,可以發現若將sweet16以及sweet17突變掉或是過度表達會導致阿拉伯芥的根的長度會減短或增長,而當處理過多的Galactose時, sweet17突變或是過度表達也會導致阿拉伯芥的側根數會減少或增多。這些結果指出液胞膜上的SWEET16以及SWETT17會將過多的Fructose或者Galactose儲存於液胞之中,減少對植物細胞的毒害。低溫時,植物細胞會儲存醣類在液胞之中來對抗逆境,雖然在低溫逆境下,藉由報導基因 (GUS fusion protein) 觀察到SWEET17的表現受到抑制,但從外表型來看過度表達SWEET17的轉植株以及突變株,並無顯著差異。而過度表達SWEET17的轉植株以及突變株在高濃度的Fructose的環境下並不會影響到其發芽率。因此我們推測SWEET17在根部液胞中Fructose的雙向運輸扮演一個重要的角色,來維持Fructose的恆定而也許進一步影響葉片醣的輸出。另外SWEET可能與根病原菌 (Pythium) 的感染有關,初步的(qRT)-PCR結果發現根部中的SWEET2以及SWEET10基因會受到根腐病菌(Pythium)感染誘導使表現量提高,再利用(qRT)-PCR分析不同生育階段及不同組織中的表現,顯示SWEET2表達在所有的組織,而SWEET10則主要表現在花及成熟植株的莖部。但當利用SWEET2-GUS fusion protein分析時,則發現SWEET2主要表達在根部。且當受根腐病菌 (Pythium) 感染時,SWEET2-GUS 在側根的表現明顯受到誘導。SWEET10-GUS 的表現雖然也受到誘導,但表現量明顯較低。藉由,SWEET2-GFP的表現,觀察在其細胞內表現的位置,發現主要表現在液胞膜上,因此SWEET2也為液胞膜上的轉運蛋白。再利用SWEET2過度表達轉殖株及突變株來觀察對生長的重要性。結果發現sweet2突變株在1.5% Sucrose、3% Glucose及0.2% Galactose的毒害下,較野生型有較低的發芽率。但在過度表達SWEET2轉殖株種子中,發芽率則無差異。此外也觀察到SWEET2過度表達以及突變會分別會延後及提早開花的時間。進一步分析植物的成熟葉、幼葉、花的醣類含量,顯示在突變及過度表達的組織中,Fructose與Galactose含量皆較野生型低。缺氮或者低溫逆境下也觀察到相同的趨勢。因此我們推論SWEET2可能會影響液胞中Fructose與Galactose的雙向運送,進而影響根部sugar efflux而影響與根腐病菌(Pythium)的交互作用。

    SWEET16 and SWEET17 proteins mainly expressed in root vacuoles. Mutation and ectopic expression of SWEET16/17 led to decreased and increased root growth in the presence of Fructose, respectively. Moreover, mutation and ectopic expression of SWEET17 led to decreased and increased branching roots in the presence of Galactose, respectively. These results suggest SWEET16 and SWEET17 will store excess sugars into vacuole in order to decrease toxicity for cells. We propose that SWEET17 plays a major role in facilitating bidirectional Fructose transport on root tonoplast to maintain cytosolic fructose homeostasis that in turn may regulate Fructose export from leaves. SWEET transporters may also be involved in interaction with root pathogens (Pythium). Glucose and Galactose contents in sweet2 mutants and SWEET2 overexpression lines were significantly changed in respond to cold stress and nitrogen deficiency. These results suggest that SWEET2 may mediate Glucose and Galactose uptake into vacuoles to affect Pythium infection.

    口試委員會審定書 # 摘要 i 英文延伸摘要 (Extended Abstract) iii 誌謝 vii List of Figures xiii List of Supplemental Data xviii Chapter 1 前言 (Introduction) 1 1.1 醣類對植物的重要性 (The importance of sugars in plants) 1 1.2 細胞間醣類的運輸 (Sugar transport within cells ) 1 1.3 細胞內醣類運輸的機制 (The mechanism of sugar transport in cells) 3 1.4 植物醣的分泌 (Sugar will efflux from plants) 4 1.5 SWEET轉運蛋白為重要醣類輸出的機制 (SWEET is an important mechanism for sugar export) 5 1.6 SWEET轉運蛋白與微生物之間的關係(The relationship between SWEET and microorganisms ) 6 1.7 研究目的 (Aim) 7 Chapter 2 材料與方法 (Material and method) 8 2.1 種子表面殺菌和培養基的生長 (Sterilization of seeds and growth medium) 8 2.2 植物土壤栽種方法 (Planting method in soil) 8 2.3 冷凍逆境試驗 (freeze stress treatment) 9 2.4 缺氮處理 (Nitrogen deficiency method) 9 2.5 發芽率觀察 (Observation of germination rate) 10 2.6 醣逆境下根生長試驗 (Root growth assay under sugar toxicity assay) 10 2.7 RNA的萃取以及反轉錄 (RNA extraction and reverse transcription–PCR) 11 2.8 Polymerase chain reaction (PCR) 12 2.9 DNA 膠體電泳分析 (DNA gel electrophoresis analysis) 13 2.10 即時定量聚合酶連鎖反應(Real-time Quantitative Polymerase Chain Reaction, (qRT)-PCR) 13 2.11 GUS染色(Histochemical localization of GUS) 14 2.12 根切片 (Hand section of root) 14 2.13 共軛焦螢光顯微鏡的觀察(Confocal microscopy for GFP observation) 15 2.14 Phythium 感染 (Phythium infection) 15 2.15 醣類的萃取 (Sugar extraction) 16 Chapter 3 結果(Result) 19 3.1 SWEET16和SWEET17其功能與調控(The function and regulation of SWEET16 and SWEET17 sugar transporter) 19 3.1.1 SWEET16 和 SWEET17 在阿拉伯芥中不同發育階段的表現情形 (Developmental expression patterns of SWEET16 and SWEET17 in Arabidopsis ) 19 3.1.2 SWEET16和 SWEET17 為液胞膜上的轉運蛋白 (SWEET16 and SWEET17 localize on the tonoplast.) 21 3.1.3 SWEET17在不同醣類逆境的表現情形 (Expression of SWEET17 under different sugar stresses ) 21 3.1.4 SWEET17表達的改變在Fructose toxicity下對根部生長的影響 (Effect of altered expression of SWEET17 on root growth under fructose toxicity) 22 3.1.5 SWEET16表達的改變在Fructose toxicity下對根部生長的影響 (Effect of altered expression of SWEET16 on root growth under fructose toxicity) 24 3.1.6 SWEET17表達的改變在Galactose toxicity下對根部生長的影響 (Effect of altered expression of SWEET17 on root growth under galactose toxicity) 25 3.1.7 SWEET17表達改變對種子的發芽率的影響 (Effect of altered expression of SWEET17 on seed germination) 26 3.1.8 在低溫逆境下SWEET17的角色 (The role of SWEET17 under cold stress) 26 3.2 SWEET2於根腐病菌Phythium致病機制的角色 (The role of SWEET2 in pathogenesis of Pythium infection) 27 3.2.1 SWEET2和SWEET10在不同的發育階段的表現情形 (Developmental expression patterns of the SWEET2 and SWEET10 gene in Arabidopsis. ) 27 3.2.2 根腐病菌(Pythium)感染後SWEET2和SWEET10的表現 (The expression pattern of SWEET2 and SWEET10 upon Pythium infection) 28 3.2.3 SWEET2 為液胞膜上的轉運蛋白 (SWEET2 transporter localizes on the tonoplast.) 29 3.2.4 SWEET2表達改變對 2-Deoxy-d-glucose toxicity下對根部生長的影響 (Effect of altered expression of SWEET2 on root grown under 2-Deoxy-d-glucose toxicity) 30 3.2.5 SWEET2表達的改變對種子發芽率的影響 (Effect of altered expression of SWEET2 on seed germination) 31 3.2.6 SWEET2會影響阿拉伯芥植株開花的時間 (SWEET2 affects the time of flowering ) 32 3.2.7 SWEET2表達改變對糖類分布的影響 (Effect of altered expression of SWEET2 on sugar content) 32 Chapter 4 討論 (Discussion) 34 4.1 SWEET16和SWEET17主要功能表現於根部 (SWEET16 and SWEET17 mainly expressed in roots) 34 4.2 SWEET17會調控根部Fructose的恆定 (SWEET17 regulates Fructose homeostasis in roots) 35 4.3 SWEET16和SWEET17為液胞膜的轉運蛋白 (SWEET16 and SWEET17 localized on the tonoplast) 36 4.4 SWEET2可能會影響植物與根腐病菌 (Pythium) 的交互作用 (SWEET2 may be involved in interaction between plant and Pythium ) 38 4.5 SWEET2對植物生長發育的影響 (Effect of SWEET2 on plant growth and development ) 39 Chapter 5 結論 (Conclusion) 42 Chapter 6 參考資料 (Reference) 97

    Ainsworth EA, Bush DR, 2011. Carbohydrate Export from the Leaf: A Highly Regulated Process and Target to Enhance Photosynthesis and Productivity. Plant Physiology 155, 64-9.

    Aluri S, Buttner M, 2007. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proceedings of the National Academy of Sciences of the United States of America 104, 2537-42.

    Anker L, 1974. Auxin-synthesis inhibition by sugars, notably by galactose. Acta Bot. Neerl.

    Ayre BG, 2011. Membrane-Transport Systems for Sucrose in Relation to Whole-Plant Carbon Partitioning. Molecular Plant 4, 377-94.

    Ayre GN, Uchino T, Mazumder B, et al., 2011. On the mechanism of carbon nanotube formation: the role of the catalyst. Journal of Physics-Condensed Matter 23.

    Baud S, Wuilleme S, Lemoine R, et al., 2005. The AtSUC5 sucrose transporter specifically expressed in the endosperm is involved in early seed development in Arabidopsis. Plant Journal 43, 824-36.

    Bishop NI, Bugla B, Senger H, 1998. Photosynthetic capacity and quantum requirement of three secondary mutants of Scenedesmus obliquus with deletions in carotenoid biosynthesis. Botanica Acta 111, 231-5.

    Boorer KJ, Forde BG, Leigh RA, Miller AJ, 1992. Functional Expression of a Plant Plasma-Membrane Transporter in Xenopus Oocytes. Febs Letters 302, 166-8.

    Braun DM, 2012. SWEET! The Pathway Is Complete. Science 335, 173-4.

    Braun DM, Slewinski TL, 2009. Genetic Control of Carbon Partitioning in Grasses: Roles of Sucrose Transporters and Tie-dyed Loci in Phloem Loading. Plant Physiology 149, 71-81.

    Buffard-Morel, 1968. Recherches sur la culture in vitro des embryons de palmier à huile (Elaeis guineensis Jacq. var. Dura): 5-Effets du glucose, du lévulose, du maltose et du saccharose. Oléagineux 23.

    Chardon F, Bedu M, Calenge F, et al., 2013. Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis. Current Biology 23, 697-702.

    Chen LQ, 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201, 1150-5.

    Chen LQ, Hou BH, Lalonde S, et al., 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527-U199.

    Chen LQ, Qu XQ, Hou BH, et al., 2012. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science 335, 207-11.

    Chetelat RT, Deverna JW, Bennett AB, 1995. Introgression into Tomato (Lycopersicon-Esculentum) of the L-Chmielewskii Sucrose Accumulator Gene (Sucr) Controlling Fruit Sugar Composition. Theoretical and Applied Genetics 91, 327-33.

    Cho YH, Yoo SD, 2011. Signaling Role of Fructose Mediated by FINS1/FBP in Arabidopsis thaliana. Plos Genetics 7.

    Colclasure GC, Yopp JH, 1976. Galactose-Induced Ethylene Evolution in Mung Bean Hypocotyls - Possible Mechanism for Galactose Retardation of Plant-Growth. Physiologia Plantarum 37, 298-302.

    Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM, 1993. Kinetic-Analysis of the Liver-Type (Glut2) and Brain-Type (Glut3) Glucose Transporters in Xenopus Oocytes - Substrate Specificities and Effects of Transport Inhibitors. Biochemical Journal 290, 701-6.

    Czajkowski R, De Boer WJ, Velvis H, Van Der Wolf JM, 2010. Systemic Colonization of Potato Plants by a Soilborne, Green Fluorescent Protein-Tagged Strain of Dickeya sp Biovar 3. Phytopathology 100, 134-42.

    Drozdowicz YM, Rea PA, 2001. Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends in Plant Science 6, 206-11.

    Echeverria E, Valich J, 1988. Carbohydrate and Enzyme Distribution in Protoplasts from Valencia Orange Juice Sacs. Phytochemistry 27, 73-6.

    Furbank RT, Scofield GN, Hirose T, Wang XD, Patrick JW, Offler CE, 2001. Cellular localisation and function of a sucrose transporter OsSUT1 developing rice grains. Australian Journal of Plant Physiology 28, 1187-96.

    Glasziou WaM, 1967. Glucose regulation of enzyme synthesis in sugar cane stem tissue. Phytochemistry 6, 769-75.

    Grennan AK, Gragg J, 2009. How SWEET It Is: Identification of Vacuolar Sucrose Transporters. Plant Physiology 150, 1109-10.

    Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG, 2005. Antifreeze proteins modify the freezing process in planta. Plant Physiology 138, 330-40.

    Guo WJ, Nagy R, Chen HY, et al., 2014. SWEET17, a Facilitative Transporter, Mediates Fructose Transport across the Tonoplast of Arabidopsis Roots and Leaves. Plant Physiology 164, 777-89.

    Haritatos E, Medville R, Turgeon R, 2000. Minor vein structure and sugar transport in Arabidopsis thaliana. Planta 211, 105-11.

    Hassan S, Mathesius U, 2012. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. Journal of Experimental Botany 63, 3429-44.

    Ibraheem O, Hove RM, Bradley G, 2008. Sucrose assimilation and the role of sucrose transporters in plant wound response. African Journal of Biotechnology 7, 4850-5.

    Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H, 2010. Azospirillum sp Strain B510 Enhances Rice Growth and Yield. Microbes and Environments 25, 58-61.

    Klemens PaW, Patzke K, Deitmer J, et al., 2013. Overexpression of the Vacuolar Sugar Carrier AtSWEET16 Modifies Germination, Growth, and Stress Tolerance in Arabidopsis. Plant Physiology 163, 1338-52.

    Krapp A, Berthome R, Orsel M, et al., 2011. Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation. Plant Physiology 157, 1255-82.

    Krugel U, Kuhn C, 2013. Post-translational regulation of sucrose transporters by direct protein-protein interactions. Frontiers in Plant Science 4.

    Kuhn C, Grof CPL, 2010. Sucrose transporters of higher plants. Current Opinion in Plant Biology 13, 287-98.

    Kumar R, Pandey S, Pandey A, 2006. Plant roots and carbon sequestration. Current Science 91, 885-90.

    Kuzyakov Y, Jones DL, 2006. Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology & Biochemistry 38, 851-60.

    Lalonde S, Wipf D, Frommer WB, 2004. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annual Review of Plant Biology 55, 341-72.

    Laugier E, Bouguyon E, Mauries A, Tillard P, Gojon A, Lejay L, 2012. Regulation of High-Affinity Nitrate Uptake in Roots of Arabidopsis Depends Predominantly on Posttranscriptional Control of the NRT2.1/NAR2.1 Transport System. Plant Physiology 158, 1067-78.

    Lei MG, Liu YD, Zhang BC, et al., 2011. Genetic and Genomic Evidence That Sucrose Is a Global Regulator of Plant Responses to Phosphate Starvation in Arabidopsis. Plant Physiology 156, 1116-30.

    Lin IW, Sosso D, Chen LQ, et al., 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508, 546-9.

    Lu Y, Steichen JM, Weise SE, Sharkey TD, 2006. Cellular and organ level localization of maltose in maltose-excess Arabidopsis mutants. Planta 224, 935-43.

    Martinoia E, Maeshima M, Neuhaus HE, 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany 58, 83-102.

    Neuhaus HE, 2007. Transport of primary metabolites across the plant vacuolar membrane. Febs Letters 581, 2223-6.

    Novak S, Damore T, Stewart GG, 1990. 2-Deoxy-D-Glucose Resistant Yeast with Altered Sugar-Transport Activity. Febs Letters 269, 202-4.

    O'hara LE, Paul MJ, Wingler A, 2013. How Do Sugars Regulate Plant Growth and Development New Insight into the Role of Trehalose-6-Phosphate. Molecular Plant 6, 261-74.

    Pharr DM, Sox HN, 1984. Changes in Carbohydrate and Enzyme Levels during the Sink to Source Transition of Leaves of Cucumis-Sativus L, a Stachyose Translocator. Plant Science Letters 35, 187-93.

    Pietilainen KH, Naukkarinen J, Rissanen A, et al., 2008. Global transcript profiles of fat in monozygotic twins discordant for BMI: Pathways behind acquired obesity. Plos Medicine 5, 472-83.

    Punja ZK, Yip R, 2003. Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie 25, 411-7.

    Rennie EA, Turgeon R, 2009. A comprehensive picture of phloem loading strategies. Proceedings of the National Academy of Sciences of the United States of America 106, 14162-7.

    Ristic Z, Ashworth EN, 1993. Ultrastructural Evidence That Intracellular Ice Formation and Possibly Cavitation Are the Sources of Freezing-Injury in Supercooling Wood Tissue of Cornus-Florida L. Plant Physiology 103, 753-61.

    Rolland F, Baena-Gonzalez E, Sheen J, 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology 57, 675-709.

    Ryan TA, Smith SJ, Reuter H, 1996. The timing of synaptic vesicle endocytosis. Proceedings of the National Academy of Sciences of the United States of America 93, 5567-71.

    Sacchi GA, Abruzzese A, Lucchini G, Fiorani F, Cocucci S, 2000. Efflux and active re-absorption of glucose in roots of cotton plants grown under saline conditions. Plant and Soil 220, 1-11.

    Sanghera GS, Wani SH, Hussain W, Singh NB, 2011. Engineering cold stress tolerance in crop plants. Curr Genomics 12, 30-43.

    Sauer N, 2007. Molecular physiology of higher plant sucrose transporters. Febs Letters 581, 2309-17.

    Schulze WX, Schneider T, Starck S, Martinoia E, Trentmann O, 2012. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. Plant Journal 69, 529-41.

    Schussler A, Martin H, Cohen D, Fitz M, Wipf D, 2006. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444, 933-6.

    Shay FJ, Hale MG, 1973. Effect of Low-Levels of Calcium on Exudation of Sugars and Sugar Derivatives from Intact Peanut Roots under Axenic Conditions. Plant Physiology 51, 1061-3.

    Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM, 2003a. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. Journal of Experimental Botany 54, 525-31.

    Sivitz AB, Reinders A, Johnson ME, et al., 2007. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiology 143, 188-98.

    Slewinski TL, Braun DM, 2010. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Science 178, 341-9.

    Srivastava AC, Ganesan S, Ismail IO, Ayre BG, 2008. Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiology 148, 200-11.

    Sze H, Li XH, Palmgren MG, 1999. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell 11, 677-89.

    Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR, 1999. The irregular xylem3 locus of arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769-79.

    Vasil, 1960. Pollen Tube Plugs in Lychnis Alba. THE OHIO JOURNAL OF SCIENCE.

    Wahl R, Wippel K, Goos S, Kamper J, Sauer N, 2010. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 8, e1000303.

    Wingenter K, Schulz A, Wormit A, et al., 2010. Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signaling, and Seed Yield in Arabidopsis. Plant Physiology 154, 665-77.

    Wormit A, Trentmann O, Feifer I, et al., 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18, 3476-90.

    Xuan YH, Hu YB, Chen LQ, et al., 2013. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America 110, E3685-E94.

    Yang B, Sugio A, White FF, 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences of the United States of America 103, 10503-8.

    Yano R, Nakamura M, Yoneyama T, Nishida I, 2005. Starch-related alpha-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiology 138, 837-46.

    下載圖示 校內:2016-09-09公開
    校外:2016-09-09公開
    QR CODE