簡易檢索 / 詳目顯示

研究生: 洪芯琦
Hung, Hsin-Chi
論文名稱: 崩積層邊坡滑動即時雲端監測系統研發
Development of a real-time cloud monitoring system for colluvium slope slides
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 邊坡破壞無線監測系統雲端監測地下水位雨量量測
外文關鍵詞: Slope failure, Wireless monitoring system, Cloud monitoring, Groundwater level fluctuation, Rainfall measurement
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地質地貌因造山運動活躍,山區面積大約佔國土總面積的百分之七十以上,當強降雨或長延時降雨發生時,時常誘發山區邊坡破壞。降雨引致之邊坡破壞通常具有延時與徵兆,因此發展此類災害之預警系統較易發揮成效。本研究選定台20線52k處公路邊坡為監測場址,此場址已有破壞歷史,前期資料顯示滑動面位於地下水位以下之崩積層與岩盤介面,至今邊坡尚未穩定,研究以微機電系統搭配感測器,發展具備雨量量測、地下水位、土壤分層含水量與地表傾角監測功能之監測系統,搭配無線傳輸功能,於選定之監測場址形成分佈式邊坡監測網路,透過WCDMA(3G)技術即時將現地監測數據上傳至雲端,結合太陽能電源系統,系統達到全自動化及長期監測之目標。由雨量計與含水量計監測結果顯示系統可及時反應現地降雨事件,而地下水位監測結果顯示此處有自由下水層,可能導致崩積層破壞。電壓監測亦顯示電源系統在長時間降雨期間能支撐系統運作,達到長期監測之目標。

    Taiwan's geological features are active due to orogenic movements. When heavy rainfall or long-delay rainfall occurs, mountain slopes are often induced to be destroyed. Rainfall-induced slope damage usually has delays and signs, so early warning systems for developing such disasters are more effective. In this study, the site at South Cross-Island Highway 52K is selected as the monitoring site. The system is equipped with several sensors to develop a monitoring system with rainfall measurement, groundwater level, soil water content and surface dip monitoring function. With the wireless transmission function, a distributed slope monitoring network is formed at selected monitoring sites. WCDMA (3G) technology instantly uploads local monitoring data to the cloud, combined with solar power system, the system achieves the goal of full automation and long-term monitoring. The monitoring results of the rain gauge and the soil water content show that the system can react to the local rainfall events in time, and the groundwater level monitoring results show that there is a free aquifer, which may cause the slope failure. Voltage monitoring also shows that the power system can support system operation during long-term rainfall and achieve long-term monitoring goals. With the monitoring data, several relation of rainfall and groundwater level are found, by these relation, groundwater level fluctuation can be better estimated, and the monitoring will continue to increase the accuracy of the estimation.

    摘要 I 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法與流程 2 第二章 文獻回顧 3 2-1 邊坡破壞 3 2-1-1 邊坡破壞之定義 3 2-1-2 降雨引致邊坡破壞 6 2-2 無限邊坡穩定分析理論 9 2-3 降雨 11 2-3-1 降雨對邊坡之影響 11 2-3-2 降雨事件定義 13 2-3-3 雨量量測 16 2-4 邊坡監測 18 第三章 邊坡無線土層監測系統 21 3-1 系統架構 21 3-2 系統感測器 22 3-2-1 電容式含水量計 23 3-2-2 地表傾度儀 25 3-2-3 沉水式液位計 27 3-2-4 雨量計 28 3-3 系統組成 30 3-3-1 微控制器 30 3-3-2 無線傳輸模組 32 3-3-3 時鐘與數據儲存模組 35 3-3-4 資料擷取模組 36 3-3-5 電源系統 36 3-3-6 定時斷電模組 38 3-4 無線土層監測模組 39 3-4-1 無線土層監測模組 40 3-4-2 系統程式流程 42 3-4-3 系統硬體架構 45 3-5 雲端顯示及運算平台 48 第四章 邊坡現地監測結果與分析 52 4-1 台20線南橫公路 52 4-1-1 地理位置及破壞歷史 52 4-1-2 地質構造與狀態 53 4-1-3 歷年降雨與地下水概述 54 4-2 監測規畫 55 4-3 監測資料與分析 62 4-3-1 降雨 62 4-3-2 體積含水量 65 4-3-3 地下水位 66 4-3-4 傾度儀 75 4-3-5 溫度與感測器 75 4-3-6 系統電壓 77 第五章 結論與建議 78 5-1 結論 78 5-2 建議 79 參考文獻 80

    1. 于宜強、吳宜昭、龔楚媖、黃柏誠、王安翔、李宗融、林冠伶 (2016),2015年台灣地區極端降雨事件彙整與分析。國家災害防救科技中心,新北市,194頁。
    2. 吳宜昭、龔楚媖、王安翔、于宜強 (2016),國家災害防救科技中心災害防救電子報,第 132 期。
    3. 李明熹 (2006),土石流發生降雨警戒分析及其應用,博士論文,國立成功大學水利及海洋工程研究所。
    4. 李秉乾、許盈松、許懷後 (2004) 山區道路邊坡監測系統自動化及緊急臨時通報系統研發(2/2)。
    5. 邱永芳、黃安斌、饒 正、李瑞庭、陳志芳、何彦德 (2011),全光纖式邊坡穩定監測系統整合與現地應用測試 (4/4),交通部運輸研究所。
    6. 青山顧問有限公司 (2017),台20線52K-150路基保護工程委託地滑調查測量及設計服務工作 監測總成果報告修正一版,交通部公路總局第五區養護工程處。
    7. 張文忠、黃安斌 (2017),公路邊坡深層滑動無線感測網路監測系統研發,交通部運輸研究所
    8. 曾致仁 (2017),降雨引致邊坡地下水位變動及作為邊坡崩壞預警指標之研究,碩士論文,國立成功大學土木工程研究所。
    9. 渡正亮 (1971),「地すベりの型と對策」,地すベり,地すベり學會,Vol. 8, No.1
    10. 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011),台灣常用山崩分類系統,第十四屆大地工程學術研究討論會
    11. 謝棃惠、簡振和、劉格非(2015),傾斗式雨量計 檢校案例之探討,104年天氣分析與預報研討會, A1-4
    12. 簡振和、謝棃惠、莊旭楨、劉格非、王璿瑋、林博雄、李育棋(2015),一份氣象觀測坪雨量觀測田野量測比對初探,104年天氣分析與預報研討會,A1-3
    13. Anderson, S.A., and Sitar, N. (1995). “Analysis of rainfall-induced debris flows.” Journal of Geotechnical Engineering, 121(7), 544-552.
    14. Bishop, A. W. and Morgenstern, N. (1960). “Stability coefficients for earth slopes.” Geotechnique, 10(4), 129-50
    15. Chang, M., Chiu Y., Lin, S. and Ke, T. (2005). “Preliminary study on the 2003 slope failure in Woo-wan-chai Area,Mt. Ali Road, Taiwan.” Engineering Geology, Vol 80, 93–114
    16. Koukis, G. and Ziourkas, C. (1991). Slope instability phenomena in Greece: a statistical analysis. Bulletin of the International Association of Engineering Geology, 43, 47-60.
    17. Kurahashi, T., Yajima, Y. and Sasaki, Y. (2008). Landslide disasters and hazard maps along national highways in Japan. In: The 2nd East Asia Landslides Symposium, Seoul, Korea, May 22–23
    18. Osanai, N., Tomita, Y., Akitama, K. Matsushita, T. (2009).”Reality of cliff failure disaster.” Technical Note of National Institute for Land and Infrastructure Management, No. 530 (in Japanese)
    19. Rahardjo, H., Nio, A. S.,Leong, E. C. and Song, N. Y. (2010). “Effects of Groundwater Table Position and Soil Properties on Stability of Slope during Rainfall” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1555-1564
    20. Uchimura T, Towhata I, Wang L and Seko I. (2009): Development of Low-cost Early Warning System of Slope Instability for Civilian Use, Proc. of 17th ISSMGE, Alexandria, Vol. 3, pp.1897–1900.
    21. Varnes D. J. (1978). “Slope movement types and processes.” In: Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R. L. & Krizek, R. J.), Transportation and Road Reserch Board, National Academy of Science, Washigton D. C., 11-33
    22. World Meteorological Organization (2017) “Guide to Meteorological Instruments and Methods of Observation” WMO-No.8

    下載圖示 校內:2023-09-01公開
    校外:2023-09-01公開
    QR CODE