簡易檢索 / 詳目顯示

研究生: 郭家豪
Kuo, Chia-Hao
論文名稱: 粉煤氣化之三維數值模擬分析
Three Dimension Numerical Simulation of Pulverized Coal Gasification
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 86
中文關鍵詞: 數值模擬氣化噴流床
外文關鍵詞: Numerical simulation, gasification, entrained-flow
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用美國楊百翰大學先進燃燒技術研究中心所發展之模擬程式PCGC-3,以三維模式模擬粉煤於上吹式噴流床氣化爐中之燃燒及氣化特性,採用之物理及數值模式包括:SIMPLER運演算法則、k-ε紊流模式、PDF平衡燃燒模式、熱量及動量傳遞模式及PSI-Cell計算程式。模擬結果與實際建造之上吹式噴流床煤炭氣化爐所提供之運轉資料進行比對,驗證程式之可靠性。針對O2/C 、H2O/C、粉煤粒徑大小,及氣化爐進給角度進行參數分析,觀察其溫度分佈、生成燃氣分佈。由結果發現,當改變粉煤負載率使O2/C比例降低時,則會使CO2、H2O生成量減少,CO、H2及CH4生成量增加;當改變O2量使O2/C比例降低時,則會使CO2、CO及H2O生成量減少,H2及CH4生成量增加,同時氣化爐內積碳量也會增加。當H2O/C比例增加時,氣相反應區重組反應趨勢產生H2,使得在出口處CH4生成量減少,H2生成量增加。另外增加H2O/C比例、渦旋直徑及縮小粉煤粒徑,皆有助於降低粉煤氣化所需之時間。

     The features of pulverized coal combustion and gasification in a up-flow entrained bed gasifier have been investigated by using the three-dimensional computer code PCGC-3, which was developed by ACERC at Brigham Young University. The physical and numerical models adopted in the present study include SIMPLER algorithm, k-ε turbulence model, PDF equilibrium, equations of mass, energy, momentum and transport, and PSI-Cell computational procedure. The predicted results are compared with the simulation data of a practical up-flow entrained bed gasifier to validate the present computer code. Effects of O2/C ratio, H2O/C ratio, coal particle size and inlet profile on the temperature distribution, constituents of syngas and carbon conversion are examined. The results obtained from the present study show that O2/C and H2O/C ratios are important parameters for coal gasification. A lower O2/C ratio by changing the coal loading ratio leads to higher concentrations of CO, H2, and CH4 and lower ones of CO2 and H2O at outlet, while a lower O2/C ratio by changing O2 supply leads to higher concentrations of H2 and CH4 and lower ones of CO, CO2 and H2O at outlet. It is noted that the concentration of solid carbon is substantially higher with a lower O2/C ratio by changing O2 supply. As the H2O/C ratio increases, reforming reaction of CH4 becomes more important and higher concentrations of H2 are produced. It is also found that the time of carbon conversion can be reduced with a higher H2O/C ratio, smaller coal particles, and increased swirl diameters.

    摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VII 符號說明 IX 第一章 緒論 1 §1.1前言 1 §1.2文獻回顧 3 1.2.1 氣化原理及方式 3 1.2.2 煤炭氣化之理論模式研究 5 1.2.3 煤炭氣化模擬及實驗之研究 7 §1.3 研究動機及目的 12 第二章 物理及數學模式 13 §2.1 問題假設 13 §2.2 氣相流體動力學(Gas-Phase Fluid Dynamics) 13 §2.3 紊流模式(Turbulence Model) 14 §2.4 化學反應模式 16 §2.5 輻射熱傳 18 §2.6 固相統御方程式 18 §2.7 炭焦氧化作用(Char Oxidation) 20 §2.8 煤炭氣化之化學反應式 20 第三章 數值方法 23 §3.1 計算程式 23 §3.2 格點系統 24 §3.3 SIMPLE-R運演算法則 25 §3.4 PSI-CELL計算程式 25 §3.5 收斂標準 26 第四章 結果與討論 27 §4.1 操作條件整理與驗證 27 §4.2 粉煤氣化之參數分析 28 4.2.1 O2/C對氣化燃氣之影響 29 4.2.2 H2O/C對氣化燃氣之影響 33 4.2.3 粉煤粒徑對氣化燃氣之影響 34 4.2.4 燃料進給角度對氣化燃氣之影響 36 第五章 結論與未來工作 37 參 考 文 獻 39 自 述 85 著作權聲明 86

    1.R.A. Ristinen and J.J. Kraushaar, “ Energy and the Environment, ” Wiley, New York, 1999.
    2.R.A. Hinrichs and M. Kleinbach, “ Energy: Its Use and the Environment (3rd Ed.), ” Harcourt, Inc., 2002.
    3.L.A. Ruth, “ Energy from Municipal Solid Waste: A Comparison with Coal Combustion Technology, ” Prog. Energy Combust. Sci. Vol.24, pp.545-564, 1998.
    4.洪福亮,“ 煤炭氣化技術之應用, ” 燃煤新技術研討會, 國立成功大學, 2001.
    5.U.S. Department of Energy (DOE), “ Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process, ” FETC, 2000.
    6.“ 煤炭氣化技術及淨化技術之研究, ” 台電電力綜合研究所研究報告, 1994.
    7.“氣化複循環發電技術引進的策略規劃, ” 工研院能資所研究報告, 1999.
    8.楊勳得, “ 21世紀能源之星-煤炭氣化廠, ” http://www.tier.org.tw/07publication/energy/9008/%AB%CA%AD%B1%ACG%A8%C6%A4@.htm.
    9.陳維新、陳建中、蔡慶達、陳建勳、吳世豐、宋勁賢,“ 固定床氣化爐中煤炭氣化之探討, ” 中華民國燃燒學會第十三屆學術研討會, pp.81, 2003年3月.
    10. 周至成、賴維祥、劉軒誠, “ 石油焦於固定床式氣化爐之氣化研究, ” 民航/航太/燃燒學術聯合會議, 2002.
    11. 謝青霖、徐恆文, “煤炭發電技術, ” http://www.itri.org.tw/cfc/co2/15/gw15_3.pdf.
    12. L.D. Smoot and D.T. Pratt, “ Pulverized-Coal Combustion and Gasification Theory and Applications for Continuous Flow Processes, ” New York and London, 1979.
    13. 周志成, “ 石油焦氣化技術研究, ” 國立成功大學航空太空工程研究所碩士論文, 2002。
    14. L.D. Smoot and P.J. Smith, “ Coal Combustion and Gasification, ” Plenum Press, New York, 1985.
    15. 鍾文清, “ IGCC發電方式簡介, ” 技術與訓練23卷6期,pp.127~133, 1998.
    16. D.B. Anthony and J.B. Howard, “ Coal Devolatilization and Hydrogasification, ” AIChE J., Vol. 22, pp.625-656, 1976.
    17. P.K. Agarwal, “ A Single Particle Model for the Evolution and Combustion of Coal Volaties, ” Fuel, Vol. 65, pp.803-810, 1986.
    18. Q. Ni and A. Williams, “ A Simulation Study on the Performance of an Entrained-Flow Coal Gasifier, ” Fuel, vol.74, pp.1257, 1995.
    19. V. Biba, J. Macek, E. Klose and I. Malekha, “ Mathematical Modeling of the Gasification of Coal Under Pressure in a Stationary Bed, ” Solid Fuel Chemistry (English Translation of Khimiya Tverdogo Topliva ) , Vol.11, n5, pp.63-71, 1997.
    20. P. Ruprecht, W. Schafer and P. Wallace, Fuel, vol.67, pp.121, 1988.
    21. D. Vamvuka, ET. Woodburn and PR. Senior, “ Modeling of an Entrained Flow Coal Gasifier: 1.Development of the Model and General Predictions, ” Fuel, vol.74, pp.1452-1460, 1995.
    22. L.D. Smoot, “ Coal Gasification, ” Encyclopedia of Energy Technology and the Environment, 4 Vol. Set, pp.769-792, 1995.
    23. C.Y. Wen and T.Z. Chaung, “ Entrainment Coal Gasification Modeling, ” Ind. Eng. Chem. Process Des. , Vol. 18, pp.684-695, 1979.
    24. R. Govin and J. Shah, “ Modeling and Simulation of an Entrained Flow Coal Gasifier, ” AIChE. J., vol.30, pp.79-92, 1984.
    25. K.M. Sprouse , “ Modeling Pulverized Coal Conversion in Entrained Flow, ” AIChE J., Vol.26, No.6, pp.964-975, 1980.
    26. R.S. Nicholas, L.D. Smoot, and P.O. Hedman, “ Entrained Flow Gasification of Coal 1.Evaluation of Mixing and Reaction Processes From Local Measurements, ” Fuel, vol. 64, pp.776-781, 1985.
    27. D. Neogi, C.C. Chang, W.P. Walanwender and L.T. Fan, “ Study of Coal Gasification in an Experimental Fluidized-Bed Reactor, ” AIChE J., Vol.32, pp.17-28, 1986.
    28. B.W. Brown, L.D. Smoot, P.J. Smith, and P.O. Hedman, “ Measurement and Prediction of Entrained Flow Gasification Processes, ” AIChE J.,Vol.34, No.3, pp.435-446, 1988.
    29. L.D. Smoot and B.W. Brown, “ Controlling Mechanisms in Gasification of Pulverized Coal, ” Fuel, Vol. 66, pp.1249-1256, 1987.
    30. “ 煤炭氣化複循環發電機組可行性研究期未報告, ”工研院能資所與台電綜合研究所, 1991.
    31. 洪孟逸, “ 挾帶床煤炭氣化之模擬, ” 國立中山大學機械工程研究所碩士論文, 1993.
    32. Y.J. Kim, J.M. Lee and S.D. Kim,“ Coal Gasification Characteristics in an Internally Circulating Fluidized Bed With Draught Tube, ” Fuel, Vol. 76, No. 11, pp. 1067-1073, 1997.
    33. C. Chen, M. Horio, and T. Kojima, “ Numerical Simulation of Entrained Flow Coal Gasifiers. Part 1: Modeling of Coal Gasification in an Entrained Flow Gasifier, ” Chemical Eng. Sci.,vol.55, pp.3861-3874, 2000.
    34. C. Chen, M. Horio and T. Kojima, “ Numerical Simulation of Entrained Flow Coal Gasifiers. Part 2: Effects of Operating Conditions on Gasifier Performance, ” Chemical Eng. Sci., Vol.55, pp.3875-3883, 2000.
    35. C. Chen, M. Horio and T. Kojima, “ Use of Numerical Modeling in the Design and Scale-up of Entrained Flow Coal Gasifiers, ” Fuel, vol.80, pp. 1513-1523, 2001.
    36. G.S. Liu, H.R. Rezaei, J.A. Lucas D.J. Harris, and T.F. Wall, “ Modeling of a Pressurized Entrained Flow Coal Gasifier: The Effect of Reaction Kinetics and Char Structure, ” Fuel, vol.79, pp.1767-1779, 2000.
    37. Y.C. Choi, X.Y. Li, T.J. Park, J.H. Kim and J.G. Lee, “ Numerical Study on the Coal Gasification Characteristics in an Entrained Flow Coal Gasifier, ” Fuel, vol.80, pp.2193-2201, 2001.
    38. 吳建彤, “ 氣化燃氣燃燒流場之數值模擬分析, ”國立成功大學航空太空工程研究所碩士論文, 2002.
    39. 楊家瑋, “ 粉煤氣化之數值模擬分析, ” 國立成功大學航空太空工程研究所碩士論文, 2003.
    40. 徐恆文, “ Private Communication, ”財團法人工業技術研究院:能源與資源研究所-潔淨能源技術組燃料應用研究室 , 2005.
    41. “ PCGC-3 USER’S GUIDE, ” ACERC at Brigham Young University, Provo, Utah, 1999.
    42. C.N. Eatough,“ Controlled Profile Reactor Design and Combustion Measurements, ” Ph.D. dissertation, Department of Mechanical Engineering, Brigham Young University, Prove, UT, 1991.
    43. D.R. Tree, D.L. Black, J.R. Rigby, M.Q. McQuay and B.W. Webb, “ Experimental Measurement in the BYU Controlled Profile Reactor, ” Prog. Energy Combsut. Sci., Vol.24, pp.355-383, 1998.
    44. S.V. Patankar, “ Numerical Heat Transfer and Fluid Flow, ” Hemisphere Publishing Corp., Washington D.C., 1980.
    45. http://www.power-technology.com/projects/isab/isab1.html.
    46. http://www.jmf.or.jp/japanese/topic/pepar/s_15.html.

    下載圖示 校內:立即公開
    校外:2006-02-08公開
    QR CODE