| 研究生: |
劉晏泠 Liu, Yan-Ling |
|---|---|
| 論文名稱: |
利⽤包覆電活性脂質膜之⾦奈⽶粒⼦破壞癌細胞氧化還原平衡達到癌症治療效果 Cancer Therapy via Redox Disruption Induced by Electron-Accepting Gold Nanoparticles Coated with Electroactive Lipid Membranes |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 金奈米粒子 、希瓦氏菌 、胞外電子轉移 、氧化還原平衡 、癌症療法 、電子接受器 |
| 外文關鍵詞: | Shewanella oneidensis MR-1, extracellular electron transfer, redox balance, cancer therapy, gold nanoparticle, electron sinker |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症治療是全球關注的重要研究領域,隨著奈米醫學的發展,奈米材料廣泛應用於腫瘤治療。然而,化學動力、光動力、聲動力和光熱治療等方法可能存在一些限制與風險。因此,本研究提出了創新的方案,無需額外使用雷射、超聲波或是添加藥物等方式,利用電活性的脂質膜(Membrane-integrated liposomes, MILs)包覆金奈米粒子(Gold nanoparticles, Au NPs)形成Au@MIL NPs做為電子接收器,誘導癌細胞電子轉移至Au NPs,透過破壞癌細胞內氧化還原平衡的方式達到腫瘤治療效果。
Au NPs因高生物相容性以及獨特的物理化學特性而備受矚目。在本研究中,Au NPs作為電子接受器發揮了關鍵作用。此外,我們利用脂質體融合細菌外膜誘導膜交換(Liposome fusion-induced membrane exchange, LIME)技術取得希瓦氏菌(Shewanella oneidensis MR-1)的脂質膜,其富含豐富的c型細胞色素(c-type cytochromes),形成電子傳遞鏈。因此 Au@MIL NPs保留MILs的電子轉移特性,進一步結合Au NPs的優勢。具有MILs的Au@MIL NPs通過誘導癌細胞電子流失,進而改變粒線體與內質網的膜電位,造成細胞膜的氧化壓力上升,引發癌細胞凋亡。透過表面電漿共振(Surface plasmon resonance, SPR)和X光吸收近邊緣結構(X-ray absorption near edge structure, XANES)證實電子從癌細胞轉移至Au@MIL NPs。體外實驗中,觀察到癌細胞膜的脂質過氧化現象,且發現較大的奈米粒子具有更佳的治療效果,展現尺寸效應,也成功證實Au@MIL NPs對肝癌和乳癌細胞均有毒殺作用,且對正常細胞無害。最後,在體內抗腫瘤實驗中,使用原位肝腫瘤小鼠模型,在100 nm Au@MIL NPs (1 mL, 300 ppm)治療下顯著抑制腫瘤生長,證明此創新療法在體內外均具優異的療效。
In current cancer treatments, various limitations and risks persist. To enhance therapeutic efficacy and develop innovative strategies, we designed Au@MIL nanoparticles, composed of gold nanoparticles and membrane-integrated liposomes (MILs) derived from Shewanella oneidensis MR-1. These nanoparticles induce autonomous electron transfer in cancer cells, disrupting their redox balance. MILs were obtained via the liposome fusion-induced membrane exchange (LIME) process, and protein electrophoresis confirmed their enrichment in c-type cytochromes, which facilitate electron transfer. Our results show that Au@MIL NPs selectively kill 11 types of cancer cells without harming normal cells and exhibit a size-dependent effect, with 100 nm particles showing superior efficacy. Mitochondrial analysis revealed apoptosis induction via mitochondrial dysfunction and lipid peroxidation in both mitochondria and the endoplasmic reticulum, establishing a non-ROSdependent mechanism. Surface plasmon resonance (SPR) and X-ray absorption near-edge structure (XANES) confirmed electron transfer into Au@MIL NPs. In an orthotopic HCC mouse model, 100 nm Au@MIL NPs (1 mL, 300 ppm) significantly suppressed tumor growth within 14 days, demonstrating strong in vitro and in vivo efficacy. Blood, urine, and organ analyses confirmed excellent biocompatibility and biosafety. This study presents a novel, non-ROS-dependent cancer therapy with promising clinical potential.
(1) Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer 2017, 17 (1), 20-37.
(2) Jin, K.T.; Lu, Z.B.; Chen, J.Y.; Liu, Y.Y.; Lan, H.R.; Dong, H.Y.; Yang, F.; Zhao, Y.Y.; Chen, X.Y. Recent trends in nanocarrier‐based targeted chemotherapy: Selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. Journal of Nanomaterials 2020, 2020 (1), 9184284.
(3) Chong, L.M.; Tng, D.J.H.; Tan, L.L.Y.; Chua, M.L.K.; Zhang, Y. Recent advances in radiation therapy and photodynamic therapy. Applied Physics Reviews 2021, 8 (4), 041322.
(4) Overchuk, M.; Weersink, R.A.; Wilson, B.C.; Zheng, G. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine. ACS Nano 2023, 17 (9), 7979-8003.
(5) Song, G.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Advanced Materials (Deerfield Beach, Fla.) 2016, 28 (14), 2716-2723.
(6) Subramanian, V.; Wolf, E.E.; Kamat, P.V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society 2004, 126 (15), 4943-4950.
(7) Kamat, P.V.; Barazzouk, S.; Hotchandani, S. Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angewandte Chemie 2002, 114 (15), 2888-2891.
(8) Long, X.; Kataoka Hamai, C.; Ho, C.L.; Huang, W.-L.; Kuo, Y.H.; Yang, L.T.; Li, W.P.; Okamoto, A. Scalable liposomes functionalization via membrane lipid exchange mechanisms. Nano Today 2025, 61, 102630.
(9) Qian, F.; Wang, H.; Ling, Y.; Wang, G.; Thelen, M.P.; Li, Y. Photoenhanced electrochemical interaction between Shewanella and a hematite nanowire photoanode. Nano Letters 2014, 14 (6), 3688-3693.
(10) Li, S.; Yuan, H.; Li, L.; Li, Q.; Lin, P.; Li, K. Oxidative stress and reprogramming of lipid metabolism in cancers. Antioxidants 2025, 14 (2), 201.
(11) Behl, T.; Makkar, R.; Anwer, M.K.; Hassani, R.; Khuwaja, G.; Khalid, A.; Mohan, S.; Alhazmi, H.A.; Sachdeva, M.; Rachamalla, M. Mitochondrial dysfunction: A cellular and molecular hub in pathology of metabolic diseases and infection. Journal of Clinical Medicine 2023, 12 (8), 2882.
(12) Chen, M.; Zhang, M.; Lu, X.; Li, Y.; Lu, C. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy. European Journal of Pharmaceutics and Biopharmaceutics 2023, 193, 16-27.
(13) Wu, X.; Zhou, Z.; Li, K.; Liu, S. Nanomaterials‐induced redox imbalance: Challenged and opportunities for nanomaterials in cancer therapy. Advanced Science 2024, 11 (16), 2308632.
(14) Zhou, J.; Vijayavenkataraman, S. 3D-printable conductive materials for tissue engineering and biomedical applications. Bioprinting 2021, 24, e00166.
(15) Lin, X.; Chen, H.; Deng, T.; Cai, B.; Xia, Y.; Xie, L.; Wang, H.; Huang, C. Improved immune response for colorectal cancer therapy triggered by multifunctional nanocomposites with self-amplifying antitumor ferroptosis. ACS Applied Materials & Interfaces 2024, 16 (11), 13481-13495.
(16) Luo, T.; Yang, H.; Wang, R.; Pu, Y.; Cai, Z.; Zhao, Y.; Bi, Q.; Lu, J.; Jin, R.; Nie, Y. Bifunctional cascading nanozymes based on carbon dots promotes photodynamic therapy by regulating hypoxia and glycolysis. ACS Nano 2023, 17 (17), 16715-16730.
(17) Correia, T.R.; Figueira, D.R.; De Sá, K.D.; Miguel, S.P.; Fradique, R.G.; Mendonça, A.G.; Correia, I.J. 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration. International Journal of Biological Macromolecules 2016, 93, 1432-1445.
(18) Abed, A.; Derakhshan, M.; Karimi, M.; Shirazinia, M.; Mahjoubin Tehran, M.; Homayonfal, M.; Hamblin, M.R.; Mirzaei, S.A.; Soleimanpour, H.; Dehghani, S. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles. Frontiers in Pharmacology 2022, 13, 797804.
(19) Freitas De Freitas, L.; Varca, G.H.C.; Dos Santos Batista, J.G.; Benévolo Lugão, A. An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials 2018, 8 (11), 939.
(20) Khan, M.a.R.; Al Mamun, M.S.; Habib, M.A.; Islam, A.N.; Mahiuddin, M.; Karim, K.M.R.; Naime, J.; Saha, P.; Dey, S.K.; Ara, M.H. A review on gold nanoparticles: Biological synthesis, characterizations, and analytical applications. Results in Chemistry 2022, 4, 100478.
(21) Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537-556.
(22) Sibuyi, N.R.S.; Moabelo, K.L.; Fadaka, A.O.; Meyer, S.; Onani, M.O.; Madiehe, A.M.; Meyer, M. Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications: A review. Nanoscale Research Letters 2021, 16, 1-27.
(23) Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11, 55-75.
(24) Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science 1973, 241 (105), 20-22.
(25) Teimouri, M.; Khosravi Nejad, F.; Attar, F.; Saboury, A.A.; Kostova, I.; Benelli, G.; Falahati, M. Gold nanoparticles fabrication by plant extracts: Synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity–a review. Journal of Cleaner Production 2018, 184, 740-753.
(26) Li, C.Y.; Karna, S.K.; Wang, C.W.; Li, W.H. Spin polarization and quantum spins in Au nanoparticles. International Journal of Molecular Sciences 2013, 14 (9), 17618-17642.
(27) Cuenya, B.R.; Behafarid, F. Nanocatalysis: Size-and shape-dependent chemisorption and catalytic reactivity. Surface Science Reports 2015, 70 (2), 135-187.
(28) Imbir, G.; Wach, A.; Czapla Masztafiak, J.; Wójcik, A.; Sá, J.; Szlachetko, J. Probing electronic-structure pH-dependency of Au nanoparticles through X-ray Absorption Spectroscopy. Scientific Reports 2024, 14 (1), 1-13.
(29) Zhang, P.; Sham, T. X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Physical Review Letters 2003, 90 (24), 245502.
(30) Chen, S.; Murray, R.W. Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. The Journal of Physical Chemistry B 1999, 103 (45), 9996-10000.
(31) Homberger, M.; Simon, U. On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368 (1915), 1405-1453.
(32) Medici, S.; Peana, M.; Coradduzza, D.; Zoroddu, M.A. Gold nanoparticles and cancer: Detection, diagnosis and therapy. Seminars in Cancer Biology 2021, 76, 27-37.
(33) Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select 2022, 3 (4), 792-828.
(34) Milan, J.; Niemczyk, K.; Kus Liśkiewicz, M. Treasure on the Earth—gold nanoparticles and their biomedical applications. Materials 2022, 15 (9), 3355.
(35) Cabuzu, D.; Cirja, A.; Puiu, R.; Mihai Grumezescu, A. Biomedical applications of gold nanoparticles. Current Topics in Medicinal Chemistry 2015, 15 (16), 1605-1613.
(36) Smith, B.R.; Gambhir, S.S. Nanomaterials for in vivo imaging. Chemical Reviews 2017, 117 (3), 901-986.
(37) Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews 2008, 60 (11), 1307-1315.
(38) Bhumkar, D.R.; Joshi, H.M.; Sastry, M.; Pokharkar, V.B. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research 2007, 24, 1415-1426.
(39) Xu, P.; Wen, C.; Gao, C.; Liu, H.; Li, Y.; Guo, X.; Shen, X.C.; Liang, H. Near-infrared-II-activatable self-assembled manganese porphyrin-gold heterostructures for photoacoustic imaging-guided sonodynamic-augmented photothermal/photodynamic therapy. ACS Nano 2023, 18 (1), 713-727.
(40) Li, J.; You, Z.; Zheng, B.; Zhai, S.; Lu, K. Au–ZnO nanomatches as radiosensitizers with improved reactive oxygen species generation and tumor hypoxia modulation for enhanced radiotherapy on triple-negative breast cancer. ACS Applied Nano Materials 2023, 6 (18), 16362-16372.
(41) Chen, Y.S.; Hung, Y.C.; Liau, I.; Huang, G.S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Research Letters 2009, 4, 858-864.
(42) Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochemistry and Biophysics Reports 2021, 26, 100991.
(43) Ikeda, S.; Takamatsu, Y.; Tsuchiya, M.; Suga, K.; Tanaka, Y.; Kouzuma, A.; Watanabe, K. Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology. Essays in Biochemistry 2021, 65 (2), 355-364.
(44) Venkateswaran, K.; Moser, D.P.; Dollhopf, M.E.; Lies, D.P.; Saffarini, D.A.; Macgregor, B.J.; Ringelberg, D.B.; White, D.C.; Nishijima, M.; Sano, H. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International Journal of Systematic and Evolutionary Microbiology 1999, 49 (2), 705-724.
(45) Myers, C.R.; Nealson, K.H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240 (4857), 1319-1321.
(46) Odio, C. Shewanella oneidensis MR-1: Background and applications. Kenyon College 2009.
(47) Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology 2010, 2 (5), a000414.
(48) Aissa, I. Electrospray ionization tandem mass spectrometry-based structure elucidation of lipid a molecules. 2023.
(49) Shi, L.; Rosso, K.M.; Clarke, T.A.; Richardson, D.J.; Zachara, J.M.; Fredrickson, J.K. Molecular underpinnings of Fe (III) oxide reduction by Shewanella oneidensis MR-1. Frontiers in Microbiology 2012, 3, 50.
(50) Potter, M.C. Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 1911, 84 (571), 260-276.
(51) Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.Q.; Fredrickson, J.K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 2016, 14 (10), 651-662.
(52) Hu, Y.; Wang, Y.; Han, X.; Shan, Y.; Li, F.; Shi, L. Biofilm biology and engineering of Geobacter and Shewanella spp. for energy applications. Frontiers in Bioengineering and Biotechnology 2021, 9, 786416.
(53) Ing, N.L.; El Naggar, M.Y.; Hochbaum, A.I. Going the distance: Long-range conductivity in protein and peptide bioelectronic materials. The Journal of Physical Chemistry B 2018, 122 (46), 10403-10423.
(54) Pirbadian, S.; Barchinger, S.E.; Leung, K.M.; Byun, H.S.; Jangir, Y.; Bouhenni, R.A.; Reed, S.B.; Romine, M.F.; Saffarini, D.A.; Shi, L. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences 2014, 111 (35), 12883-12888.
(55) Kim, B.; Baek, G.; Kim, C.; Lee, S.Y.; Yang, E.; Lee, S.; Kim, T.; Nam, J.Y.; Lee, C.; Chae, K.J. Progress and prospects for applications of extracellular electron transport mechanism in environmental biotechnology. ACS ES&T Engineering 2024, 4 (7), 1520-1539.
(56) Okamoto, A.; Kalathil, S.; Deng, X.; Hashimoto, K.; Nakamura, R.; Nealson, K.H. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Scientific Reports 2014, 4 (1), 5628.
(57) Deng, Z.; Liu, J.; Xi, M.; Wang, C.; Fang, H.; Wu, X.; Zhang, C.; Sun, G.; Zhang, Y.; Shen, L. Biogenic platinum nanoparticles on bacterial fragments for enhanced radiotherapy to boost antitumor immunity. Nano Today 2022, 47, 101656.
(58) Xi, M.; Deng, Z.; Zhang, C.; Wu, X.; Zhang, L.; Zhang, Y.; Sun, X.; Zhou, J.; Yang, G. FeS-based cascade bioreactors driven by Shewanella oneidensis MR-1 for efficient chemodynamic therapy with augmented antitumor immunity. Nano Today 2024, 55, 102165.
(59) Wang, J.W.; Ji, P.; Zeng, J.Y.; Liang, J.L.; Cheng, Q.; Liu, M.D.; Chen, W.H.; Zhang, X.Z. Engineered bacterium-metal-organic framework biohybrids for boosting radiotherapy with multiple effects. Biomaterials 2025, 314, 122901.
(60) Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology 1965, 13 (1), 238-252.
(61) Magar, K.T.; Boafo, G.F.; Li, X.; Chen, Z.; He, W. Liposome-based delivery of biological drugs. Chinese Chemical Letters 2022, 33 (2), 587-596.
(62) Cheng, X.; Henick, B.S.; Cheng, K. Anticancer therapy targeting cancer-derived extracellular vesicles. ACS Nano 2024, 18 (9), 6748-6765.
(63) Szatanek, R.; Baj Krzyworzeka, M.; Zimoch, J.; Lekka, M.; Siedlar, M.; Baran, J. The methods of choice for extracellular vesicles (EVs) characterization. International Journal of Molecular Sciences 2017, 18 (6), 1153.
(64) Soung, Y.H.; Ford, S.; Zhang, V.; Chung, J. Exosomes in cancer diagnostics. Cancers 2017, 9 (1), 8.
(65) Toyofuku, M.; Nomura, N.; Eberl, L. Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology 2019, 17 (1), 13-24.
(66) Juodeikis, R.; Carding, S.R. Outer membrane vesicles: Biogenesis, functions, and issues. Microbiology and Molecular Biology Reviews 2022, 86 (4), e00032-00022.
(67) Roier, S.; Zingl, F.G.; Cakar, F.; Durakovic, S.; Kohl, P.; Eichmann, T.O.; Klug, L.; Gadermaier, B.; Weinzerl, K.; Prassl, R. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nature Communications 2016, 7 (1), 10515.
(68) Schwechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nature Reviews Microbiology 2015, 13 (10), 605-619.
(69) Purushothaman, S.; Cama, J.; Keyser, U.F. Dependence of norfloxacin diffusion across bilayers on lipid composition. Soft Matter 2016, 12 (7), 2135-2144.
(70) Cui, L.; Kittipongpittaya, K.; Mcclements, D.J.; Decker, E.A. Impact of phosphoethanolamine reverse micelles on lipid oxidation in bulk oils. Journal of the American Oil Chemists' Society 2014, 91, 1931-1937.
(71) Ermilova, I.; Swenson, J. DOPC versus DOPE as a helper lipid for gene-therapies: Molecular dynamics simulations with DLin-MC3-DMA. Physical Chemistry Chemical Physics 2020, 22 (48), 28256-28268.
(72) Chen, Y.-C.; Li, Y.-T.; Lee, C.-L.; Kuo, Y.-T.; Ho, C.-L.; Lin, W.-C.; Hsu, M.-C.; Long, X.; Chen, J.-S.; Li, W.-P. Electroactive membrane fusion-liposome for increased electron transfer to enhance radiodynamic therapy. Nature Nanotechnology 2023, 18 (12), 1492-1501.
(73) Wang, L.C.; Chen, H.K.; Wang, W.J.; Hsu, F.Y.; Huang, H.Z.; Kuo, R.T.; Li, W.P.; Tian, H.K.; Yeh, C.S. Boosting upconversion efficiency in optically inert shelled structures with electroactive membrane through electron donation. Advanced Materials 2024, 36 (30), 2404120.
(74) Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases 2023, 10 (4), 1367-1401.
(75) Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics 2021, 13 (9), 1332.
(76) Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chemical Reviews 2015, 115 (4), 1990-2042.
(77) Jaque, D.; Maestro, L.M.; Del Rosal, B.; Haro Gonzalez, P.; Benayas, A.; Plaza, J.; Rodríguez, E.M.; Solé, J.G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6 (16), 9494-9530.
(78) Manoharan, D.; Wang, L.C.; Chen, Y.C.; Li, W.P.; Yeh, C.S. Catalytic nanoparticles in biomedical applications: Exploiting advanced nanozymes for therapeutics and diagnostics. Advanced Healthcare Materials 2024, 13 (22), 2400746.
(79) Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.-Q.; Fredrickson, J.K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 2016, 14 (10), 651-662.
(80) Zhu, F.; Huang, Y.; Ni, H.; Tang, J.; Zhu, Q.; Long, Z.E.; Zou, L. Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1. Chemosphere 2022, 288, 132661.
(81) Chen, Y.C.; Li, Y.T.; Lee, C.L.; Kuo, Y.T.; Ho, C.L.; Lin, W.C.; Hsu, M.C.; Long, X.; Chen, J.S.; Li, W.P. Electroactive membrane fusion-liposome for increased electron transfer to enhance radiodynamic therapy. Nature Nanotechnology 2023, 18 (12), 1492-1501.
(82) Chen, Y.C.; Chang, L.C.; Liu, Y.L.; Chang, M.C.; Liu, Y.F.; Chang, P.Y.; Manoharan, D.; Wang, W.J.; Chen, J.S.; Wang, H.C. Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy. Nature Communications 2025, 16 (1), 3253.
(83) Hou, F.; Sun, S.; Abdullah, S.W.; Tang, Y.; Li, X.; Guo, H. The application of nanoparticles in point-of-care testing (POCT) immunoassays. Analytical Methods 2023, 15 (18), 2154-2180.
(84) Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio-Protocol 2019, 9 (1), e3128.
(85) Wang, L.; Yuan, L.; Zeng, X.; Peng, J.; Ni, Y.; Er, J.C.; Xu, W.; Agrawalla, B.K.; Su, D.; Kim, B. A multisite‐binding switchable fluorescent probe for monitoring mitochondrial ATP level fluctuation in live cells. Angewandte Chemie International Edition 2016, 55 (5), 1773-1776.
(86) Drummen, G.P.; Van Liebergen, L.C.; Den Kamp, J.a.O.; Post, J.A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe:(Micro) Spectroscopic characterization and validation of methodology. Free Radical Biology and Medicine 2002, 33 (4), 473-490.
(87) Wang, F.; Naowarojna, N.; Zou, Y. Stratifying ferroptosis sensitivity in cells and mouse tissues by photochemical activation of lipid peroxidation and fluorescent imaging. STAR Protocols 2022, 3 (2), 101189.
(88) Kim, H.; Xue, X. Detection of total reactive oxygen species in adherent cells by 2', 7'-dichlorodihydrofluorescein diacetate staining. JoVE (Journal of Visualized Experiments) 2020, (160), 10-3791.
(89) Zielonka, J.; Kalyanaraman, B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radical Biology and Medicine 2018, 128, 3-22.
(90) Gu, X.; Ma, Y.; Liu, Y.; Wan, Q. Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protocols 2021, 2 (1), 100245.
(91) Gutiérrez, L.; Stepien, G.; Gutiérrez, L.; Pérez-Hernández, M.; Pardo, J.; Pardo, J.; Grazú, V.; De La Fuente, J.M. 1.09 Nanotechnology in drug discovery and development. Comprehensive Medicinal Chemistry III 2017, 264-295.
(92) Franken, N.A.; Rodermond, H.M.; Stap, J.; Haveman, J.; Van Bree, C. Clonogenic assay of cells in vitro. Nature Protocols 2006, 1 (5), 2315-2319.
(93) Brix, N.; Samaga, D.; Belka, C.; Zitzelsberger, H.; Lauber, K. Analysis of clonogenic growth in vitro. Nature Protocols 2021, 16 (11), 4963-4991.
(94) Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics 2009, 10 (1), 57-63.
(95) Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nature Reviews Genetics 2019, 20 (11), 631-656.
(96) Green, M.R.; Sambrook, J. Isolation of poly(A)+ messenger RNA using magnetic oligo(dT) beads. Cold Spring Harbor Protocols 2019, 2019 (10), pdb.prot101733.
(97) Alturkistani, H.A.; Tashkandi, F.M.; Mohammedsaleh, Z.M. Histological stains: A literature review and case study. Global Journal of Health Science 2015, 8 (3), 72.
(98) Magaki, S.; Hojat, S.A.; Wei, B.; So, A.; Yong, W.H. An introduction to the performance of immunohistochemistry. Methods in Molecular Biology 2019, 1897, 289-296.
(99) Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death & Differentiation 1999, 6 (2), 99-104.
(100) Steiner, J.L.; Lang, C.H. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. The International Journal of Biochemistry & Cell Biology 2017, 89, 125-135.
(101) Csala, M.; Kardon, T.; Legeza, B.; Lizák, B.; Mandl, J.; Margittai, É.; Puskás, F.; Száraz, P.; Szelényi, P.; Bánhegyi, G. On the role of 4-hydroxynonenal in health and disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2015, 1852 (5), 826-838.
(102) Dilshad, N.; Ansari, M.S.; Beamson, G.; Schiffrin, D.J. Amines as dual function ligands in the two-phase synthesis of stable AuxCu(1−x) binary nanoalloys. Journal of Materials Chemistry 2012, 22 (21), 10514-10524.
(103) Regan, D.; Williams, J.; Borri, P.; Langbein, W. Lipid bilayer thickness measured by quantitative DIC reveals phase transitions and effects of substrate hydrophilicity. Langmuir 2019, 35 (43), 13805-13814.
(104) Pal, A.; Khakhar, D.; Ray, D.; Aswal, V.K. Effect of curvature on bilayer thickness of liposome suspensions in water. Physica Scripta 2023, 98 (11), 115018.
(105) Mihály, J.; Deák, R.; Szigyártó, I.C.; Bóta, A.; Beke Somfai, T.; Varga, Z. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and CH stretching vibrations. Biochimica et Biophysica Acta (BBA)-Biomembranes 2017, 1859 (3), 459-466.
(106) Bonechi, C.; Tamasi, G.; Donati, A.; Leone, G.; Consumi, M.; Cangeloni, L.; Volpi, V.; Magnani, A.; Cappelli, A.; Rossi, C. Physicochemical characterization of hyaluronic acid and chitosan liposome coatings. Applied Sciences 2021, 11 (24), 12071.
(107) Compton, S.J.; Jones, C.G. Mechanism of dye response and interference in the Bradford protein assay. Analytical Biochemistry 1985, 151 (2), 369-374.
(108) Miller, D.J.; Nicholas, D. 3, 3′, 5, 5′-Tetramethylbenzidine/H2O2 staining is not specific for heme proteins separated by gel electrophoresis. Analytical Biochemistry 1984, 140 (2), 577-580.
(109) Sedano Varo, E.; Egeberg Tankard, R.; Kryger Baggesen, J.; Jinschek, J.; Helveg, S.; Chorkendorff, I.; Damsgaard, C.D.; Kibsgaard, J. Gold nanoparticles for CO2 electroreduction: An optimum defined by size and shape. Journal of the American Chemical Society 2024, 146 (3), 2015-2023.
(110) Gillissen, M.; Yasuda, E.; De Jong, G.; Levie, S.; Go, D.; Spits, H.; Van Helden, P.; Hazenberg, M. The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity. Journal of Immunological Methods 2016, 434, 16-23.
(111) Tipping, W.J.; Merchant, A.S.; Fearon, R.; Tomkinson, N.C.; Faulds, K.; Graham, D. Temporal imaging of drug dynamics in live cells using stimulated Raman scattering microscopy and a perfusion cell culture system. RSC Chemical Biology 2022, 3 (9), 1154-1164.
(112) Swain, B.M.; Guo, D.; Singh, H.; Rawlins, P.B.; Mcalister, M.; Van Veen, H.W. Complexities of a protonatable substrate in measurements of Hoechst 33342 transport by multidrug transporter LmrP. Scientific Reports 2020, 10 (1), 20026.
(113) Xiang, A.D.; Li, B.; Du, Y.F.; Abbaspoor, S.; Jalil, A.T.; Saleh, M.M.; He, H.C.; Guo, F. In vivo and in vitro biocompatibility studies of Pt based nanoparticles: a new agent for chemoradiation therapy. Journal of Cluster Science 2023, 34 (5), 2653-2663.
(114) Hao, R.; Zhang, G.; Zhang, J.; Zeng, L. Ultrasmall Au/Pt-loaded biocompatible albumin nanospheres to enhance photodynamic/catalytic therapy via triple amplification of glucose-oxidase/catalase/peroxidase. Journal of Colloid and Interface Science 2024, 654, 212-223.
(115) Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Research 2021, 31 (2), 107-125.
(116) Llabani, E.; Hicklin, R.W.; Lee, H.Y.; Motika, S.E.; Crawford, L.A.; Weerapana, E.; Hergenrother, P.J. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nature Chemistry 2019, 11 (6), 521-532.
(117) Dong, Z.; Shanmughapriya, S.; Tomar, D.; Siddiqui, N.; Lynch, S.; Nemani, N.; Breves, S.L.; Zhang, X.; Tripathi, A.; Palaniappan, P. Mitochondrial Ca2+ uniporter is a mitochondrial luminal redox sensor that augments MCU channel activity. Molecular Cell 2017, 65 (6), 1014-1028. .
(118) Hoogewijs, K.; James, A.M.; Smith, R.A.; Gait, M.J.; Murphy, M.P.; Lightowlers, R.N. Assessing the delivery of molecules to the mitochondrial matrix using click chemistry. Chembiochem 2016, 17 (14), 1312-1316.
(119) Oliver, J.D.; Roderick, H.L.; Llewellyn, D.H.; High, S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Molecular Biology of the Cell 1999, 10 (8), 2573-2582.
(120) Missiroli, S.; Patergnani, S.; Caroccia, N.; Pedriali, G.; Perrone, M.; Previati, M.; Wieckowski, M.R.; Giorgi, C. Mitochondria-associated membranes (MAMs) and inflammation. Cell Death & Disease 2018, 9 (3), 329.
(121) Wu, C.; Zhao, W.; Yu, J.; Li, S.; Lin, L.; Chen, X. Induction of ferroptosis and mitochondrial dysfunction by oxidative stress in PC12 cells. Scientific Reports 2018, 8 (1), 574.
(122) Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4‐hydroxy‐2‐nonenal. Oxidative Medicine and Cellular Longevity 2014, 2014 (1), 360438.
(123) Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews 2010, 4 (8), 118.
(124) Sheldon, M.T.; Van De Groep, J.; Brown, A.M.; Polman, A.; Atwater, H.A. Plasmoelectric potentials in metal nanostructures. Science 2014, 346 (6211), 828-831.
(125) Navarrete, J.; Siefe, C.; Alcantar, S.; Belt, M.; Stucky, G.D.; Moskovits, M. Merely measuring the UV–visible spectrum of gold nanoparticles can change their charge state. Nano Letters 2018, 18 (2), 669-674.
(126) Zhang, P.; Sham, T. Tuning the electronic behavior of Au nanoparticles with capping molecules. Applied Physics Letters 2002, 81 (4), 736-738.
(127) Lin, Y.X.; Liu, Z.; Leung, K.; Chen, L.Q.; Lu, P.; Qi, Y. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. Journal of Power Sources 2016, 309, 221-230.
(128) Brown, M.D.; Suteewong, T.; Kumar, R.S.S.; D’innocenzo, V.; Petrozza, A.; Lee, M.M.; Wiesner, U.; Snaith, H.J. Plasmonic dye-sensitized solar cells using core− shell metal− insulator nanoparticles. Nano Letters 2011, 11 (2), 438-445.