| 研究生: |
張岱融 Chang, Tai-Junz |
|---|---|
| 論文名稱: |
聚甲基丙烯酸甲酯/水滑石奈米複合材料之
合成與物性 Synthesis and Physical Preperties of Poly(Methyl Methacrylate)/LDH Nanocomposites |
| 指導教授: |
陳志勇
Chen, Chuh-Yung 王振乾 Wang, Cheng-Chien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 水滑石 、奈米複材 |
| 外文關鍵詞: | LDH, nanocomposite |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用共沈澱法合成出陰離子型無機層狀黏土,水滑石;再以不同碳數的長鏈脂肪酸CH3(CH2)10COOH、CH3(CH2)14COOH、CH3(CH2)16COOH,將水滑石親水的表面改質為親油的有機水滑石,經XRD的分析,插入脂肪酸後的水滑石層間距離最大可達到3nm。
本研究亦利用有機水滑石經溶劑分散後,加入甲基丙烯酸甲酯單體(MMA)均勻混和,以AIBN起始溶液聚合(solution polymerization)合成聚甲基丙烯酸甲酯/水滑石奈米複合材料,經由XRD及TEM觀察出水滑石在聚甲基丙烯酸甲酯中為剝離型或插入型。
由TGA分析的結果,當外部高分子因溫度升高裂解時由於聚甲基丙烯酸甲酯的末端基被水滑石保護,加上水滑石本身的耐熱性質使得第一段的熱裂解溫度提升,較純的聚甲基丙烯酸甲酯熱裂解溫度提高了50℃。由DSC分析,加入水滑石會阻礙高分子的移動性,使玻璃轉移溫度Tg也較純聚甲基丙烯酸甲酯提高約20℃。由DMA測試,加入水滑石所形成奈米複材可增加聚甲基丙烯酸甲酯的彈性,較純的聚甲基丙烯酸甲酯能夠儲存更多能量最多高出1.35倍,而損失模數也比純聚甲基丙烯酸甲酯高出1.5倍。
Abstract
Our laboratory made of the coprecipition reaction to synthesize a number of organic acids intercalated layered anionic clays was called hydrotalcite (or LDH). Then LDH was intercalated with long chain fatty acids (CH3(CH2)nCOOH, n=10,14,16) between these layers to form organo-LDH. The modified LDH was characterized by X-ray diffraction that the fatty acids incorporation within the inter-gallery space resulted in a shift of d003 reflection from 0.77nm(Na2CO3-LDH) to about 3nm(organo-LDH).
Poly (methyl methacrylate)/LDH composites were prepared by solution polymerization of methyl methacrylate in the presence of fatty acids-modified LDH. This organic-inorganic hybrid, which contained a nanoscale dispersion of the LDH, was a material with greatly improved physical and mechanical characteristics.
The thermal properties of these PMMA/LDH nanocomposites were promoted by the presence of LDH. The TGA results indicated that the decomposition temperature of chain-end of the PMMA/LDH nanocomposite was higher than pure PMMA about 50℃. On the other hand, the LDH intercalated PMMA showed that the glass transition temperature (Tg) was higher than pure PMMA about 20℃.This resulted from the confinement of intercalated PMMA chains within the inter-galleries that prevented the segmental motions of the polymer chains. The mechanical properties were obtained from dynamic mechanical analysis. The storage modulus of PMMA/LDH was higher than pure PMMA. It depicted that the organophilic LDH can increase the mechanical properties of polymer materials.
參考文獻
1. S. Kormanei, J. Master. Chem., 2, 1219, 1992
2. Sikka, M.; Cerini, L. N.; Ghosh, S. S. Winey, K. I., Journal of polymer Science: Part B: Polymer Physics., 34, 1443, 1996
3. Allcock, H. R. Lamp, F. W.,”Contemporary Polymer Chemistry”, 2nd Edition, Pretice-Hall., Inc.(1990)
4. 蔡宗燕,工業材料,125期,第120頁(1997)
5. E. Manasse, Atti. Soc. Toscana Sc. Nat., Proc. Verb., 24, 2, 1915
6. W. Feitknecht, Helv. Chim. Acta., 25, 131, 1942
7. W. Feitknecht, Helv. Chim. Acta., 25, 555, 1942
8. R. Allmann, Acta Cryst., B24, 872, 1968,
9. H. F. W. Taylor, Miner. Magg., 37, 338, 1969,
10. J. S. Bone, Ph. D. report, Development and Characteristion of the Interlayer Chemistry of Layered Douple Hydroxides. University of Exeter, June 1995.
11. F. Cavani,F. Trifiro,A. Vaccari, Catal. Today, 11, 173, 1991,
12. 杜以波, D. G. Evans,孫鵬,段雪,化學通報,第5期,第20頁, 2000
13. Simon Carlino, Solid State Ionics, 98, 73~84, 1997
14. M. Borja, P. K. Dutta, Langmuir, 12, 402, 1996
15. D. L. Bish, Bull. Mineral., 103, 170, 1980
16. S. Miyata, Clays Clay Miner., 33, 369, 1975
17. S. Miyata, Clays Clay Miner., 28, 50, 1980
18. S. Miyata, Clays Clay Miner., 31, 305, 1983
19. S. Miyata, A. Okada. Clays Clay Miner., 25, 14, 1977
20. S. Miyata, T. Kumura, Chem. Lett., 843, 1975
21. M. A. Ulibarri, F. M. Labajos, Inorg. Chem., 33, 2592, 1994
22. Park I Y, Kuroda K, Kato C J. Chem. Soc., Dalton Trans., 3071, 1990
23. M. A. Drezdzon, Inorg. Chem., 27, 4628, 1988
24. W. T. Reichle, J.Catal., 94, 547, 1985
25. E. Narita,P. Kaviratra,T. Pinnavaia, J. Chem. Lett., 805, 1991
26. S. Carlino, M. J. Hudson, S. Waqif Husain, J. A. Knowles, Solid State Ionic, 84, 117, 1996
27. H. C. B. Hansen, R. M. Taylor, Clay Miner, 26, 311, 1991
28. E. D. Dimotakis, T. J. Pinnavaia, Inorg. Chem., 29, 2393, 1990
29. S. Carlino, M. J. Hudson, S. Waqif Husain, J. A. Knowles, Solid State Ionic, 84, 117, 1996
30. Marlon Borja, Prabir K. Dutta, J. Phys. Chem., 96, 5434, 1992
31. Emmanuel P.Giannelis, Adv. Mater., 8, 29, 1996
32. A. Akelah, A. Moet, J. App. Polym. Sci. : App. Polym. Sym., 55, 153, 1994
33. C. Zilg, R. Thompson, R. Miilhaupt, J. Finter, Adv. Mater., 11, 49, 1999
34. Sugahara, Y., Yokoyama, N., Kuroda, K. and Kato, C. Ceram. Int., 14, 163, 1988
35. Tanaka, M., Park, I. Y., Kuroda, K. and Kato, C. Bull. Chem. Soc. Jpn, 62, 3442, 1989
36. Oriakhi, C. O., Farr, I. V. and Lerner, M. M. J. Mater. Chem., 6, 103, 1996
37. Wilson Jr., O. C., Olorunyolemi, T. Jaworski, A., Borum, L., Young, D., Siriwat, A., Dickens, E., Oriakhi, C. and Lerner, M. Appl. Clay