| 研究生: |
林佳葦 Lin, Chia-Wei |
|---|---|
| 論文名稱: |
氮化鈦薄膜於背接觸式與整片單一式染料敏化太陽能電池電極材料之應用 Titanium Nitride Thin Film as an Electrode Material for Back-contact and monolithic Dye-sensitized Solar Cell |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 氮化鈦 、背接觸式 、整片單一式 、多孔質電極 |
| 外文關鍵詞: | titanium nitrite, back-contact, monolithic, porous electrode |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前染料敏化太陽能電池最高效率為13%。然而,一般標準染敏電池使用的透明導電玻璃不僅成本高,重量與厚度也限制了光入射至元件的光通量。有鑑於此,本研究以多孔性氮化鈦電極應用在背接觸式元件取代傳統染敏電池之透明導電玻璃。
氮化鈦材料穩定、高導電率,適合作於電池之電極,本論文中探討不同氮氣流量與氬氣流量比對氮化鈦薄膜在晶體方向成長、導電度與厚度的差異,氮氣氬氣流量比為4.76%時,膜厚為450nm,片電阻為5.27Ω/sq,顏色呈咖啡金。使用聚苯乙烯球製作出多孔性電極,並應用在背接觸式染敏電池,分別使用低消光係數染料907與高消光係數染料MK2,在二氧化鈦膜厚為10.6μm及8.8μm時,效率為4.53%及4.16%,皆為一般傳統染敏的75.5%。
同樣將多孔性電極應用在整片單一式染敏電池,使用MK2染料可得效率2.47%。
In this study, we demonstrated a novel method to fabricate porous titanium nitrite (TiN) thin film as electrode material for the application of back-contact dye-sensitized solar cells (BC-DSCs) and monolithic dye-sensitized solar cells (mDSCs), delivering energy conversion efficiencies of 4.53 % and 2.47 %, respectively. Meanwhile, we also presented the non-TCO back-contact DSCs (non-TCO BC-DSCs). In this case, the fabrication cost of DSCs could be greatly reduced because the FTO glasses were all replaced by TiN conductive film. The non-TCO BC-DSCs yielded a conversion efficiency of 2.66%.
(1) Zhao, J.; Wang, A.; Green, M. A.; Ferrazza, F. Applied Physics Letters 1998, 73, 1991.
(2) Schultz, O.; Glunz, S. W.; Willeke, G. P. Progress in Photovoltaics 2004, 12, 553.
(3) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Progress in Photovoltaics 2013, 21, 827.
(4) Gratzel, M. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2003, 4, 145.
(5) Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402.
(6) Oregan, B.; Gratzel, M. Nature 1991, 353, 737.
(7) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Japanese Journal of Applied Physics Part 2-Letters & Express Letters 2006, 45, L638.
(8) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Gratzel, M. Journal of the American Chemical Society 2005, 127, 16835.
(9) Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P. Journal of Physical Chemistry C 2009, 113, 6290.
(10) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. Nanoscale 2011, 3, 4088.
(11) Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J. Advanced Functional Materials 2005, 15, 1617.
(12) Gratzel, M. Nature 2001, 414, 338.
(13) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Graetzel, M. Science 2011, 334, 629.
(14) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; CurchodBasile, F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; NazeeruddinMd, K.; Grätzel, M. Nat Chem 2014, 6, 242.
(15) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society 2009, 131, 6050.
(16) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Graetzel, M.; Park, N.-G. Scientific Reports 2012, 2.
(17) Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Graetzel, M. Nature 2013, 499, 316.
(18) Hagfeldt, A.; Gratzel, M. Accounts of Chemical Research 2000, 33, 269.
(19) Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M.; Tanabe, N.; Watanabe, M. Journal of Photochemistry and Photobiology a-Chemistry 2004, 164, 87.
(20) Fang, X. M.; Ma, T. L.; Guan, G. Q.; Akiyama, M.; Abe, E. Journal of Photochemistry and Photobiology a-Chemistry 2004, 164, 179.
(21) Gratzel, M. Journal of Photochemistry and Photobiology a-Chemistry 2004, 164, 3.
(22) Kroon, J. M.; Bakker, N. J.; Smit, H. J. P.; Liska, P.; Thampi, K. R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M.; Hinsch, A.; Hore, S.; Wurfel, U.; Sastrawan, R.; Durrant, J. R.; Palomares, E.; Pettersson, H.; Gruszecki, T.; Walter, J.; Skupien, K.; Tulloch, G. E. Progress in Photovoltaics 2007, 15, 1.
(23) Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Solar Energy Materials and Solar Cells 2006, 90, 1176.
(24) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Journal of the American Chemical Society 2003, 125, 475.
(25) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Chemical Communications 2002, 1464.
(26) Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M. Nature Materials 2003, 2, 402.
(27) Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. Applied Physics Letters 2005, 86.
(28) Swanson, R. M.; Beckwith, S. K.; Crane, R. A.; Eades, W. D.; Kwark, Y. H.; Sinton, R. A.; Swirhun, S. E. Ieee Transactions on Electron Devices 1984, 31, 661.
(29) Kashiwa, Y.; Yoshida, Y.; Hayase, S. Applied Physics Letters 2008, 92.
(30) Fuke, N.; Katoh, R.; Islam, A.; Kasuya, M.; Furube, A.; Fukui, A.; Chiba, Y.; Komiya, R.; Yamanaka, R.; Han, L.; Harima, H. Energy & Environmental Science 2009, 2, 1205.
(31) Fuke, N.; Fukui, A.; Islam, A.; Komiya, R.; Yamanaka, R.; Han, L.; Harima, H. Journal of Applied Physics 2008, 104.
(32) Fuke, N.; Fukui, A.; Komiya, R.; Islam, A.; Chiba, Y.; Yanagida, M.; Yamanaka, R.; Han, L. Chemistry of Materials 2008, 20, 4974.
(33) Fu, D.; Zhang, X. L.; Barber, R. L.; Bach, U. Advanced Materials 2010, 22, 4270.
(34) Yoo, B.; Kim, K.-J.; Lee, D.-K.; Kim, K.; Ko, M. J.; Kim, Y. H.; Kim, W. M.; Park, N.-G. Optics Express 2010, 18, A395.
(35) Yoo, B.; Kim, K.-J.; Kim, Y. H.; Kim, K.; Ko, M. J.; Kim, W. M.; Park, N.-G. Journal of Materials Chemistry 2011, 21, 3077.
(36) Salim, N. T.; Zhang, K.; Zhang, S.; Han, L. Applied Physics Letters 2012, 101.
(37) Hanak, J. J. Solar Energy 1979, 23, 145.
(38) Kay, A.; Gratzel, M. Solar Energy Materials and Solar Cells 1996, 44, 99.
(39) Kruger, J.; Plass, R.; Gratzel, M.; Matthieu, H. J. Applied Physics Letters 2002, 81, 367.
(40) Schmidt-Mende, L.; Zakeeruddin, S. M.; Gratzel, M. Applied Physics Letters 2005, 86.
(41) Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.; Uchida, S.; Gratzel, M. Advanced Materials 2005, 17, 813.
(42) Han, H.; Bach, U.; Cheng, Y.-B.; Caruso, R. A. Applied Physics Letters 2007, 90.
(43) Han, H.; Bach, U.; Cheng, Y.-B.; Caruso, R. A.; MacRae, C. Applied Physics Letters 2009, 94.
(44) Pettersson, H.; Gruszecki, T.; Schnetz, C.; Streit, M.; Xu, Y.; Sun, L.; Gorlov, M.; Kloo, L.; Boschloo, G.; Haggman, L.; Hagfeldt, A. Progress in Photovoltaics 2010, 18, 340.
(45) Fredin, K.; Gorlov, M.; Pettersson, H.; Hagfeldt, A.; Kloo, L.; Boschloo, G. Journal of Physical Chemistry C 2007, 111, 13261.
(46) Ito, S.; Takahashi, K. International Journal of Photoenergy 2012.
(47) Fu, D.; Lay, P.; Bach, U. Energy & Environmental Science 2013, 6, 824.
(48) Kwon, J.; Park, N.-G.; Lee, J. Y.; Ko, M. J.; Park, J. H. Acs Applied Materials & Interfaces 2013, 5, 2070.
(49) Thompson, S. J.; Pringle, J. M.; Zhang, X. L.; Cheng, Y.-B. Journal of Physics D-Applied Physics 2013, 46.
(50) Samadpour, M.; Ghane, Z.; Ghazyani, N.; Tajabadi, F.; Taghavinia, N. Journal of Physics D-Applied Physics 2013, 46.
(51) Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Péchy, P.; Grätzel, M. Progress in Photovoltaics: Research and Applications 2007, 15, 603.