簡易檢索 / 詳目顯示

研究生: 鄭力中
Cheng, Li-Chung
論文名稱: 廣視域多光子激發螢光顯微術之開發與應用
R&D of Widefield Multiphoton Excited Fluorescence Microscopy
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 同時空間與時間聚焦廣視域多光子激發螢光
外文關鍵詞: simultaneously spatial and temporal focusing, widefield, multiphoton excited fluorescence
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利 用 同 時 空 間 與 時 間 聚 焦 (simultaneously spatial and temporal focusing)技術的廣視域多光子激發螢光顯微技術(widefield multiphoton excited fluorescence microscopy)有機會快速提供活體生物組織的三維(three-dimensional,3D)多光子螢光影像。不同於一般傳統式的多光子螢光顯微術需要逐點掃描,廣視域多光子顯微技術僅需要掃描一個軸向,也就是z 軸,藉此去建構一個3D 影像。本論文利用Ti:sapphire 飛秒雷射振盪器(femtosecond laser oscillator)當作飛秒雷射放大器(femtosecond laser amplifier)的根本光源(seeding source),輸出的120 fs 脈衝雷射其重覆率(repetition rate)為10 kHz,也將原先的脈衝雷射之能量提升至4.2 瓦,而這樣的瞬間極大能量足夠去激發大於100 x 100 μm2 面積的多光子螢光信號。此外,軸向的解析度可以到達5 μm以下,再利用冷卻式電子倍增感光耦合器(electron multiplying charge couple device,EMCCD)照相機來擷取螢光影像信號,其幀速率(frame rate)依照不同螢光團分子的放出效率而有不同的值,其最高可達數百Hz。因此具有此飛秒雷射放大器與低溫EMCCD 照相機的協助,此廣域多光子顯微技術可以提供非常快速擷取活體生物影像,例如可以即時動態觀測腦部神經細胞的活動以及肝臟的代謝等。目前此系統的縱向解析度可達將近2.5 μm,也利用量測微米螢光球來推估其側向解析度達500 nm 以下。另外,成功地針對腦神經細胞組織進行多光子螢光3D 影像重建,目前使用EMCCD 全範 圍1000 x 1000 的像素其幀速度最快可達20 Hz。

    A widefield multiphoton excited fluorescence microscopy based on simultaneously spatial and temporal focusing technique has potential for providing fast three-dimensional (3D) multiphoton excited fluorescence images for bio-tissues in vivo. Unlike conventional multiphoton microscopy based on pixel by pixel scanning technique, the widefield multiphoton microscopy detects sequential 2D images via axial scanning, i.e. z-axis, and converts them to construct a complete 3D image. By using a Ti:sapphire femtosecond laser oscillator as a seeding source to feed a femtosecond laser amplifier, an instantly extreme power at 120 fs pulse width and 10 kHz repetition rate from 4.2 W average power can achieve multiphoton excited fluorescence imaging with the excitation area over 100 x 100 μm2. The fluorescence image is detected by a TE-cooled electron multiplying charge couple device (EMCCD) camera whose frame rate can be over 100 Hz according to the emission efficiency of fluorophores. With the help of the femtosecond laser amplifier and the EMCCD camera, the widefield multiphoton excited fluorescence microscopy can provide very fast imaging for bio-tissues in vivo such as monitoring brain neuron activity and liver metabolism. Currently, the axial resolution of the system is about 2.5 μm and the lateral resolution is better than 500 nm based on the testing of fluorescence micro-beads. Furthermore, the 3D images of neuron cell tissues have been successfully achieved with a frame rate of 20 Hz at the full range of 1000 x 1000 pixels.

    摘要.................................................... I Abstract .............................................. II 誌謝.................................................... III 目錄.................................................... IV 圖目錄.................................................. VI 第一章 序論 ............................................. 1 1-1 前言 .............................................. 1 1-2 研究動機及目的 ...................................... 2 1-3 文獻回顧............................................ 3 1-4 論文架構............................................ 5 第二章 超快脈衝雷射原理與特性................................ 6 2-1 超快脈衝雷射......................................... 6 2-2 再生放大器.......................................... 9 2-3 多光子激發螢光....................................... 13 2-4 色散元件............................................ 19 2-5 空間聚焦與時間聚焦.................................... 24 第三章廣視域多光子激發螢光顯微術............................. 27 3-1 整體系統架構........................................ 27 3-2 理論與模擬分析...................................... 30 3-2-1 同時空間與時間聚焦的實現........................... 30 3-2-2 理論模擬........................................ 34 第四章系統檢正與實驗結果................................... 43 4-1 系統誤差檢正........................................ 43 4-2 實驗結果與討論...................................... 46 第五章結論與展望.......................................... 57 參考文獻................................................ 60

    [1] G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses” Optics Express 13, 2153-2159 (2005).
    [2] D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Optics Express 13, 1468-1476 (2005).
    [3] M.E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Optics Communications 281, 1796-1805 (2008).
    [4] M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Optics Express 14, 12243-12254 (2006).
    [5] O. E. Martinez, “3000 times grating compressor with positive group-velocity dispersion - application to fiber compensation in 1.3-1.6 m region,” IEEE J. Quantum Electrons 23, 59-64 (1987).
    [6] M. Minsky, “Microscopy apparatus,” US patent 3,013,467 (1961).
    [7] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [8] G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, and M. H. Wade, B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified, Ti:sapphire system,” Journal of Microscopy 181, 253-259 (1995).
    [9] H. Buist, M. Muller, J. Squier, and G. J. Brakenhoff, “Real-time two-photon absorption microscopy using multipoint excitation,” Journal of Microscopy 192, 217-226 (1998).
    [10] J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Optics Letters 23, 655-657 (1998).
    [11] D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, ”Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Optics Express 7, 273-279 (2000).
    [12] E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Optics Letters 30, 1686-1688 (2005).
    [13] E. Papagiakoumou, V. D. Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Optics Express 16, 22039-22047 (2008).
    [14] D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic Microfabrication,” Optics Letters 35, 1602-1604 (2010).
    [15] R. Du, K. Bi, S. Zeng, D. Li, S. Xue, and Q. Luo, “Analysis of fast axial scanning scheme using temporal focusing with acousto-optic deflectors,” Journal of Modern Optics 56, 81-84 (2009).
    [16] M. E. Durst, A. A. Straub, and C. Xu, “Enhanced axial confinement of sum-frequency generation in a temporal focusing setup,” Optics Letters 34, 1786-1788 (2009).
    [17] A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, “Multilayer three-dimensional super resolution imaging of thick biological samples,” PNAS 105, 20221-20226 (2008).
    [18] Spitfire Pro:Ti:sapphire Regenerative Amplifier System, User’s manual, Newport (2008).
    [19] J. W. Lichtman and J. A. Conshello, “Fluorescence microscopy,” Nature Method 2, 910-919 (2005).
    [20] G. G. Stokes, “On the change of refrangibility of light,” Philosophical Transactions of the Royal Society of London 142, 463-562 (1852).
    [21] 陳長營,無孔徑近場掃描式顯微術於螢光影像之研究,國立成功大學工程科學研究所,九十七學年度碩士論文。
    [22] B. Valeur, Molecular Fluorescence Principles and Applications, Wiley-VCH (2002).
    [23] D. Kim, Ultrafast Optical Pulse Manipulation in Three Dimensional-resolved Microscopic Imaging and Microfabrication, PhD. Thesis, MIT (2009).
    [24] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley-Interscience (2007).
    [25] J. B. Duild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Applied Optics 36, 397-401 (1997).
    [26] E. Hecht, Optics, Addison Wesley (2002).
    [27] M. Born, E. Wolf, and B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press (1999).
    [28] B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy, Oxford University Press, (2008).
    [29] J. W. Goodman, Introduction to Fourier Optics, Roberts & Company (2005).
    [30] I. B. Levitan and L. K. Kaczmarek, The Neuron: Cell and Molecular Biology, Oxford University Press (2002).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE