簡易檢索 / 詳目顯示

研究生: 梁家皓
Liang, Chia-Hao
論文名稱: 線性串聯彈性致動器之模組化研究
Modularization Study of Linear Series Elastic Actuators
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 146
中文關鍵詞: 模組化線性串聯彈性致動器電流感測阻抗控制頓轉扭矩扭矩漣波
外文關鍵詞: series elastic actuators, modularization, current sensing, impedance control, cogging torque, torque ripple
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 串聯彈性致動器為將致動源與撓性元件結合,藉由量測撓性元件變形量推得機構輸出端出力之致動器,相較於剛性致動器,串聯彈性致動器有高逆向驅動能力及高精度力量控制等優點,常被用於協作型機器人領域,本文開發出模組化串聯彈性致動器及雙軸小型化致動器模組兩種新型線性串聯彈性致動器,以模組化、高剛性及小型化為目標,模組化串聯彈性致動器為工業型機器人及協作型機器人皆可使用的線性致動器模組,設計上平面彈簧拆裝快速,模組化串聯彈性致動器以切換不同撓性元件勁度快速適應當前任務,因此模組化串聯彈性致動器具有很高的靈活性;以模組化、雙軸及小型化為目標,雙軸小型化致動器模組為滿足協作型機器人雙自由度驅動需求而開發,於復健機器人、外甲機器人及人形機器人等研究領域中,控制肩、腕及腿部皆需雙自由度致動器達成,雙軸小型化致動器有小體積、高出力及模組化等特徵,利於與其他結構進行整合,透過與前人設計及市售產品比較歸納新設計致動器模組優勢。
    串聯彈性致動器型及電流型致動器模組為模組化串聯彈性致動器兩種模式,串聯彈性致動器型安裝平面彈簧或內藏式平面彈簧作為撓性元件,內藏式平面彈簧為平面彈簧新設計,在有限空間下提升彈簧變形量使彈簧能承受更大的線性出力,串聯彈性致動器型透過量測彈簧變形量獲得精準輸出力量,因此可執行精準力量及等效虛擬勁度控制,更換勁度不同平面彈簧可在力量控制解析度及最大出力之間做出取捨,低勁度平面彈簧會有高力量控制解析度及低最大出力。電流型將撓性元件替換為鋼板,維持高勁度的情況下透過步進馬達電流推算輸出力量進行力量控制,在高出力下有不錯的力量控制精度。最後本文提出新模組化驅動板並探討頓轉扭矩及扭矩漣波效應對模組輸出影響,提升致動器模組化及對本文使用的交軸驅動法高精度力量控制進行驗證,證明致動器模組高控制性能。

    Series elastic actuators (SEAs) are commonly used in the collaborative robot as a force sensing actuator. In contrast to the rigid actuators, SEAs are highly backdrivable and provide more accurate force control. By adding an elastic element between the electromagnetic motor and the output, interaction force can be indirectly obtained and controlled. This thesis presents two novel SEAs modules, modular SEA (MSEA) and two-axis-miniaturized SEA (TAMSEA). The MSEA is a compact, lightweight, and high rigidity linear SEA module with high output force potential for industrial and collaborative robots. The elastic element of a MSEA can be installed and uninstalled in a short period, which allows the MSEA to adapt to industrial and collaborative tasks fast. The TAMSEA is a compact, lightweight, two-axis linear SEA module. Rehabilitation robot, exoskeleton robot, and humanoid robot are aspects of collaborative robot research that the TAMSEA can be used to control shoulders, wrists, and legs motion by two-axis actuation. It holds favorable characteristics of small size, high output force, and modularization, which should fit in any practical scenario. The MSEA and the TAMSEA will be compared with former SEA designs and market products to conclude their advantages.

    摘要 I English Abstract II 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIV 符號說明 XXIII 第一章 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 2 1.2.1 線性串聯彈性致動器文獻回顧 2 1.2.2 智慧致動器模組文獻回顧 3 1.2.3 前人SEA研究回顧 5 1.3 動機與目標 6 1.4 論文架構 7 第二章 線性串聯彈性致動器之改善設計 9 2.1 前言 9 2.2 模組化串聯彈性致動器 9 2.2.1 傳動結構設計 9 2.2.2 固定式光學讀頭設計 13 2.2.3 內藏式平面彈簧設計 13 2.2.4 主副滑軌設計 17 2.2.5 模組化串聯彈性致動器規格比較 19 2.3 雙軸小型化致動器模組 22 2.3.1 傳動結構設計 23 2.3.2 負載端質量塊頂部結合設計 26 2.3.3 空間最小化設計 27 2.3.4 撓性元件設計 30 2.3.5 雙軸小型化致動器模組規格比較 31 2.4 本章小節 32 第三章 致動器模組驅動及模型建立 33 3.1 前言 33 3.2 致動器模組實驗環境及驅動 33 3.2.1 軟硬體配置 33 3.2.2 馬達數學模型 41 3.2.3 交軸驅動法 44 3.2.4 速度估測法選擇 46 3.2.5 馬達驅動電路 48 3.3 驅動整合模組設計 50 3.3.1 驅動整合模組設計概念 51 3.3.2 原步進馬達驅動環境 52 3.3.3 驅動整合模組架構設計 54 3.3.4 驅動整合模組散熱元件選用 59 3.3.5 PC端程式轉移性能影響實驗 66 3.4 感測元件校正及馬達特性 72 3.4.1 電流感測器 72 3.4.2 彈簧勁度校正 75 3.4.3 馬達扭矩參數鑑別 78 3.4.4 馬達特性對扭矩控制影響 79 3.5 線性串聯彈性致動器模型 86 3.5.1 時域模型 86 3.5.2 頻域模型 88 3.6 本章小結 89 第四章 控制器性能分析 90 4.1 前言 90 4.2 位置控制器建立及性能驗證 91 4.3 電流型扭矩控制器性能驗證 94 4.3.1 電流型扭矩控制器模型建立及系統穩定性分析 94 4.3.2 電流型扭矩控制器掃頻實驗 101 4.3.3 電流型扭矩控制器參數最佳化驗證及系統模擬 102 4.4 SEA型力量控制器性能驗證 108 4.4.1 SEA型力量控制器模型建立及系統穩定性分析 108 4.4.2 SEA型等效質量計算及系統參數鑑別 111 4.4.3 SEA型力量控制器參數最佳化驗證及系統模擬 114 4.5 SEA型阻抗控制器性能驗證 121 4.5.1 SEA型阻抗控制器模型建立及系統穩定性分析 121 4.5.2 SEA型順向位置追蹤實驗 126 4.5.3 SEA型阻抗控制逆推實驗 134 4.6 本章小結 137 第五章 結論與可延伸之未來研究 138 5.1 結論 138 5.2 可延伸之未來研究 139 參考文獻 141

    [1] G.A. Pratt, M.M, Williamson (1995), “Series elastic actuators,” Intelliegnt Rob-ots and Systems, IEEE/RSJ International Conference on, p. 399, International
    Conference on Intelligent Robots and Systems-Volume 1. 1995
    [2] Coleman Knabe, Bryce Lee (2014). DESIGN OF A COMPACT, LIGHTWEIGHT, ELECTROMECHANICAL LINEAR SERIES ELASTIC ACTUATOR. Proc-eedings of the ASME 2014 International Design Engineering Technical Confer-ences & Computers and Information in Engineering Conference IDETC/CIE
    2014 August 17-20, 2014, Buffalo, New York, USA.
    [3] Jerry E. Pratt, Ben Krupp (2009). The Yobotics-IHMC Lower Body Humanoid Robot. The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15, 2009 St. Louis, USA
    [4] Nicholas Paine, Luis Sentis (2012). A New Prismatic Series Elastic Actuator
    with Compact Size and High Performance. Proceedings of the 2012 IEEE Inte-rnational Conference on Robotics and Biomimetics December 11-14, 2012, Gu-angzhou, China.
    [5] Emre Sariyildiz, Gong Chen (2015). Robust position control of a novel series elastic actuator via disturbance observer. Faculty of Engineering and
    Information Sciences - Papers: Part B. 313.
    [6] Victor Grosu, Carlos Todriguez-Guerrero (2017). Design of Smart Modular Var-iable Stiffness Actuators for Robotic-Assistive Devices. IEEE/ASME TRANSA-CTIONS ON MECHATRONICS, VOL. 22, NO. 4, AUGUST 2017.
    [7] Victor Barasuol, Octavio A. Villarreal-Magana (2018). Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control.
    Frontiers in Robotic and AI, June 2018, Volume 5, Article 51.
    [8] Khairuddin Osman, Ahmad ’Athif Mohd Faudzi (2014). System Identification
    and Embedded Controller Design forPneumatic Actuator with Stiffness Charact-eristic. Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, Article ID 271741, 13 pages.
    [9] Kyoungchul Kong, Joonbum Bae (2010). A Compact Rotary Series Elastic Act-uator for Knee Joint Assistive System. 2010 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 2010, Anch-orage, Alaska, USA.
    [10] Elliott J. Rouse, Luke M. Mooney (2014). Clutchable series-elastic actuat-or:Im-plications for prosthetic knee design. The International Journal of Robotics Res-earch 2014, Vol. 33(13) 1611–162
    [11] 尤應龍 (2018)。「開發微形串聯彈性致動器於遠端操作機器人的精準力感知與控制」,成功大學機械工程學系碩士學位論文。
    [12] 黃彥霖 (2020)。「步進馬達扭矩控制方法之研究」,成功大學機械工程學系碩士學位論文。
    [13] 鍾佳城 (2021)。「機器人關節模組的扭矩感測與控制」,成功大學機械工程學系碩士學位論文。
    [14] 李昱鋒 (2020)。「使用串聯彈性驅動於仿人機器手腕之二微扭矩與阻抗控制」,成功大學機械工程學系碩士學位論文。
    [15] 林奎佑 (2019)。「使用步進馬達於直線串聯彈性致動器的準確力量及阻抗控制」,成功大學機械工程學系碩士學位論文。
    [16] 簡隸 (2016) 。「使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制」,成功大學機械工程學系碩士學位論文。
    [17] 吳冠毅 (2018)。「肘外甲機器之串聯彈性致動機構與驅動控制器設計」,成功大學 機械工程學系碩士學位論文。
    [18] 蘇胤毓 (2019)。「具串聯彈性致動與錯位適應之前臂復健機器人設計」,成功大學機械工程學系碩士學位論文。
    [19] 李育昇 (2020)。「以串聯彈性致動器呈現任意穩定虛擬勁度」,成功大學機械工程學系碩士學位論文。
    [20] 徐嘉佑 (2013)。「具兩共置撓性驅動軸機器手腕之動力與控制。」,成功大學機械工程學系碩士學位論文。
    [21] Dombre, E., Duchemin, G., Poignet, P., & Pierrot, F. (2003). Dermarob: A safe robot for reconstructive surgery. IEEE Transactions on Robotics and Automati-on, 19(5), 876-884.
    [22] RENISHAW®"規格資料表" Available: https://www.renishaw.com.tw/tw/atom-dx-
    downloads--42884 [Accessed: August 18, 2021].
    [23] Choi, W., Won, J., Lee, J., & Park, J. (2017). Low stiffness design and hyster-esis compensation torque control of SEA for active exercise rehabilitation robo-ts. Autonomous Robots, 41(5), 1221-1242.
    [24] ToyoRobot®." CSJ20詳細訊息" Available: http://www.viso-auto.com/product/
    showproduct.php?id=71 [Accessed: July 29, 2021].
    [25] HIWIN MIKROSYSTEM® "型錄下載" Available:https://www.hiwinmikro.tw/zh/
    product/servo-actuator/servo-actuator-laa-series [Accessed: July 29, 2021].
    [26] Oriental motor® "RDS2系列產品目錄"Available: https://www.orientalmotor.com.tw/products/limo/list/detail/?product_name=DRSM42LG-04B2AZAK%2BAZD-K%2BCC010VZR2&brand_tbl_code=LM&series_code=SO00&type_code=component&driver_type=%E8%84%88%E6%B3%A2%E5%88%97%E8%BC%B8%E5%85%A5%E5%9E%8B[Accessed: July 29, 2021].
    [27] ALLEGRO®"ACS70331DATASHEET"Available: https://www.allegromicro.com/en
    /products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs70331[Accessed: August 18, 2021].
    [28] Delpoux, R., Bodson, M., & Floquet, T. (2014). Parameter estimation of perm-anent magnet stepper motors without mechanical sensors. Control Engineering
    Practice, 26, 178-187.
    [29] Orientalmotor® "下載PKP系列"Available: https://www.orientalmotor.com.tw/prod-ucts/st/stepmotor_pkp2_v/[Accessed: August 19, 2021].
    [30] Bodson, M., Chiasson, J. N., Novotnak, R. T., & Rekowski, R. B. (1993).
    High-performance nonlinear feedback control of a permanent magnet stepper
    motor. IEEE Transactions on Control Systems Technology, 1(1), 5-14.
    [31] Nollet, F., Floquet, T., & Perruquetti, W. (2008). Observer-based second order
    sliding mode control laws for stepper motors. Control engineering practice, 16(4), 429-443.
    [32] R. H. Brown, S. C. Schneider and M. G. Mulligan (1992). Analysis of Algori-thms for Velocity Estimation from Discrete Position Versus Time Data. IEEE
    Trans, Vol. 39, No.1, 11-19.
    [33] Ohmae, T., Matsuda, T., Kamiyama, K., & Tachikawa, M. (1982). A micropro-cessor-controlled high-accuracy wide-range speed regulator for motor drives.
    IEEE Transactions on Industrial Electronics, (3), 207-211.
    [34] Tsuji, T., Hashimoto, T., Kobayashi, H., Mizuochi, M., & Ohnishi, K. (2008). A wide-range velocity measurement method for motion control. IEEE Transacti-ons on industrial electronics, 56(2), 510-519.
    [35] Lee, S. H., & Song, J. B. (2001). Acceleration estimator for low-velocity and
    low-acceleration regions based on encoder position data. IEEE/ASME transacti-ons on mechatronics, 6(1), 58-64.
    [36] Texas Instruments®. "OPA548 High-Voltage, High-Current, Wide-Output-Voltage-Swing Power Operational Amplfier" Available: https://www.ti.com/product/OPA548?keyMatch=OPA548&tisearch=Search-EN-everything&usecase=GPN [Accessed: August 19, 2021]
    [37] COOL MUSCLE®. "COOL MUSCLE integrated servo systems" Available: http://www.myostat.ca/documents/CM%20Catalog%2020121.pdf [Accessed: September 9, 2021]
    [38] THK® & SEED®. "THK Technical Support" Available: https://tech.thk.com/upload/catalog_claim/pdf/394E_SEED+Picsel.pdf [Accessed: September 9, 2021]
    [39] CUI DEVICES®."CFM-4010V-070-273-20 Datasheet (PDF)" Available:https://www.mouser.tw/ProductDetail/CUI-Devices/CFM-4010V-070-273-20?qs=YCa%2FAAYMW01Qd5N05KlSyg%3D%3D [Accessed: September 16, 2021]
    [40] AAVID®. " Board Level Cooling – Channel 7021" Available: https://www.mouser.com/Thermal-Management/Heat-Sinks/7021-Series/Datasheets/_/N-5gfs?P=1y98j66 [Accessed: September 16, 2021]
    [41] Texas Instruments®. "OPA549 High-Voltage, High-Current, Excellent Output Swing Operational Amplfier" Available: https://www.ti.com/product/OPA549?keyMatch=OPA549&tisearch=search-everything&usecas [Accessed: August 19, 2021]
    [42] Sanyo Denki®." 109R0605H401 Datasheet (PDF)" Available: https://www.mouser.tw/ProductDetail/Sanyo-Denki/109R0605H401?qs=Ldb7c5mTB17l9oit9syEgA==&gclid=Cj0KCQjw1ouKBhC5ARIsAHXNMI93CwEZjU2Z_xObpJkRWlH0rYC39gJme14Ftd6FW_qbreV1DHA-_sAaAnCqEALw_wcB[Accessed: September 16, 2021]
    [43] AAVID®." 6396, 6398, 6399, 6400 High power extruded heat sink with large
    radial fins Data Sheet" Available: https://twen.rs-online.com/web/p/heatsinks/7124279 [Accessed: September 16, 2021]
    [44] R. Islam, I. Husain, A. Fardoun, K. McLaughlin (2007). Permanent magnet sy-nchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Industry Applications Annual Meeting, 0197-2618.
    [45] Nicola Bianchi & Silverio Bolognani (2002). Design techniques for reducing
    the cogging torque in surface-mounted PM motors. IEEE TRANSACTIONS
    ON INDUSTRY APPLICATIONS, VOL. 38, NO. 5, SEPTEMBER/OCTOBER 2002.
    [46] JY Lee, JH Chang, DH Kang, SI Kim (2007). Tooth shape optimization for
    cogging torque reduction of transverse flux rotary motor using design of exper-iment and response surface methodology. IEEE Transactions on magnetics,
    VOL. 43, NO.4, APRIL 2007.
    [47] Liang-Yi Hsu, Mi-Ching Tsai (2004). Tooth shape optimization of brushless pe-rmanent magnetmotors for reducing torque ripples. Journal of Magnetism and Magnetic Materials 282 (2004) 193.
    [48] Paolo Mattavelli, Member, IEEE, Luca Tubiana, and Mauro Zigliotto (2005).
    Torque-ripple reduction in PM synchronous motor drives using repetitive
    current control. IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 20, NO. 6, NOVEMBER 2005.
    [49] 許登傑、陳文瑞、麥朝創與蔡孟勳 (2017)。「系統頻譜分析於工具機上的應用」,機械工業雜誌。

    無法下載圖示 校內:2026-11-15公開
    校外:2026-11-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE