簡易檢索 / 詳目顯示

研究生: 潘洛安
Parker, Romaine
論文名稱: 含Ru(II) 錯合物, Pt(IV)前驅藥物及過氧化銅之金屬有機骨架應用於藥物傳輸與近紅外線介導多模式癌症療法
Pt(IV) Prodrug, Ru(II) Complex and Copper Peroxide- Incorporated Metal-Organic Framework Nanoparticles for NIR-Mediated Multimodal Anticancer Therapy and Fluorescence Imaging
指導教授: 陳登豪
Chen, Teng-Hao
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 89
外文關鍵詞: metal-organic framework, photothermal therapy, fenton-like reaction, multimodal anticancer therapy, Pt(IV) prodrug, copper peroxide, Ru(II) complex
相關次數: 點閱:48下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據台灣衛生福利部數據顯示,惡性腫瘤多年來一直穩居台灣十大死因之一。然而,常用的化療藥物通常具有多種不良副作用,這限制了它們的治療效果。當代研究的重點是創建專門針對腫瘤微環境(T-ME)獨特特性的藥物傳遞和反應系統。目的是提高癌症治療的有效性。腫瘤表現出增加的滲透性和延長的保留,通常稱為增強的滲透性和保留(EPR)。奈米級藥物傳遞載體可以利用EPR效應穿透特定的腫瘤組織,進而增加藥物濃度,提高治療效果。然而,奈米藥物遞送載體不具備固有的治療品質,這降低了系統的整體有效性。這項研究採用化學方法來開發金屬有機框架(MOF),在過去的二十年中,金屬有機框架作為具有超強滲透性的物質而獲得了廣泛的認可。 MOFs被用作奈米醫學的載體,並積極參與反應以改善治療效果。對更有效和更有針對性的癌症治療的追求推動了多功能奈米醫學的發展。 IV)前藥和釕(II)三(聯吡啶)陽離子絡合物。 CuO2 有兩個值得注意的特性,使其對於治療癌症特別有效:過渡金屬,例如銅,用於化學動力學治療(CDT),透過催化內部過氧化氫(H2O2)轉化為羥基自由基(·OH)來根除癌細胞。然而,天然存在的 H2O2 不足以產生顯著的抗癌作用。在 T-ME 內,Cu2+離子具有參與類芬頓反應的能力,該反應是由 H2O2 水平升高引發的,當暴露於近紅外線輻射時,這種反應會進一步增強。透過擁有固有的過氧化物(-H2O2)基團,奈米粒子能夠在酸性環境中分解時自行提供H2O2。這些相互作用會產生 CDT 所需的活性氧 (ROS)。這些反應產生的副產物可以提高酸度和細胞氧水平,隨後被 Pt(IV) 前藥利用。 Pt(IV) 前藥被 GSH 還原成順鉑。從這裡,順鉑進入 DNA,形成加合物,抑制細胞增殖以進行化療 (CT)。初始反應的副產物會生成 H2O2,Cu2+ 離子可以回收。在光照射下,UiO-67(bpy)@CuO2/Ru(bpy)3/Pt(IV)產生的熱量足以引起熱燒蝕,主要貢獻者是過氧化銅。釕表現出光致發光,並被用作視覺追蹤細胞內奈米顆粒分散情況的手段。這一點至關重要,因為螢光可以深入了解奈米顆粒的運動、其作用模式及其生物分佈。這個創新的多功能奈米醫學平台結合了化學動力學療法、光熱療法和視覺追蹤功能,展示了一種有前途的標靶癌症治療方法。透過利用腫瘤微環境的獨特特性,並透過各種成分的協同作用增強治療效果,這項研究為更有效、毒性更低的癌症治療鋪平了道路。

    According to data from Taiwan's Ministry of Health and Welfare, malignant tumors have regularly been one of the top 10 causes of death in Taiwan for many years. However, frequently used chemotherapy drugs generally have multiple undesirable side effects, which limits their effectiveness in treatment. Contemporary research is centered toward creating medicine delivery and response systems that specifically target the unique properties of the tumor microenvironment (T-ME). The aim is to improve the effectiveness of cancer treatment. Tumors demonstrate increased permeability and extended retention, commonly referred to as enhanced permeability and retention (EPR). Nanoscale drug delivery carriers can utilize the EPR effect to penetrate the specific tumor tissue, resulting in increased drug concentration and improved treatment efficacy. However, the nanodrug delivery carriers do not possess inherent therapeutic qualities, which reduces the overall effectiveness of the system. This study employed chemical methodologies to exploit metal-organic frameworks (MOFs), which have gained significant recognition as exceptionally permeable substances in the past two decades. MOFs are employed as carriers for nanomedicine and actively participate in reactions to improve therapeutic results. The development of multifunctional nanomedicine has been driven by the quest for more efficient and targeted cancer treatments.In order to create a therapeutic platform that utilizes near-infrared (NIR) radiation, a platform was incorporated with copper peroxide (CuO2), a Pt(IV) prodrug, and ruthenium(II) tris(bipyridyl) cationic complex. CuO2 has two noteworthy features that makes it particularly efficient for treating cancer, those . Transitions metals, such as copper, are employed in chemodynamic treatment (CDT) to eradicate cancer cells by catalyzing the conversion of internal hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Nevertheless, the naturally occurring H2O2 is insufficient to produce a substantial anticancer impact. Within the T-ME, Cu2+ ions have the ability to engage in a Fenton-like reaction, triggered by the elevated levels of H2O2, which are further enhanced when exposed to NIR radiation. By possessing innate peroxide (-H2O2) group, the nanoparticle is able to self-supply H2O2 upon decomposition in an acidic environment. These interactions generate reactive oxygen species (ROS) for CDT. The reactions produce byproducts that can raise acidity and cellular oxygen levels, which are subsequently utilized by the Pt(IV) prodrug. The Pt(IV) prodrug undergoes reduction by GSH to become cisplatin. From here, cisplatin makes its way to DNA where it forms adducts, that inhibit cell proliferation to afford chemotherapy (CT). A byproduct of the initial reaction results in the generation of H2O2 that Cu2+ ions can recycle. Under photoirradiation, UiO-67(bpy)@CuO2/Ru(bpy)3/Pt(IV) generates heat that is sufficient to induce thermal ablation with the main contributor being copper peroxide. Ruthenium exhibits photoluminescence and was employed as a means to visually track the dispersion of the nanoparticles within cells. This is vital because, fluorescence can give insight as to the movement of the nanoparticle, its mode of action, and its biodistribution. This innovative multifunctional nanomedicine platform, which combines chemodynamic therapy, photothermal therapy, and visual tracking capabilities, demonstrates a promising approach for targeted cancer treatment. By leveraging the unique properties of the tumor microenvironment and enhancing therapeutic efficacy through the synergistic actions of various components, this study paves the way for more effective and less toxic cancer therapies.

    Abstract 3 Acknowledgements 5 List of Figures 9 List of Tables 13 Chapter 1 14 Introduction 14 1.1 Motivation 14 1.2 Tumor Microenvironment 16 1.3 Chemotherapy 18 1.4 Photothermal Therapy (PTT) 21 1.5 Chemodynamic Therapy (CDT) 23 1.6 Metal Organic Frameworks 25 1.7 Zirconium-based MOFs /UiO series 27 1.8 Ruthenium (II) tris(bipyridyl) cationic complex (Ru(bpy)3)2+ 28 1.9 Design of UiO-67(bpy)@CuO2/Ru(bpy)3/Pt (IV) 29 1.10 Literature Review 33 Chapter 2 35 2.1.1 Preparation of UiO-67(bpy) 36 2.1.2 Preparation of c,c,t-[Pt(NH3)2Cl2(OOCCH2CH2COOH)2 36 2.1.3 Preparation of Copper Peroxide (CuO2) 37 2.1.4 Preparation of UiO-67(bpy)@CuO2 37 2.1.5 Preparation of UiO-67(bpy)@CuO2/Ru(bpy)3 37 2.1.6 Preparation of UiO-67(bpy)@CuO2/Ru(bpy)3/Pt(IV) 38 2.2.1 Instruments 38 2.2.3 Metal Release in GSH Solution 39 2.3.4 ROS generation 39 2.3.5 Temperature Change of Nanoparticles 40 2.4.1 Instruments 42 2.4.2 Cells, mediums, buffers, chemicals, and kits 42 2.4.3 Preparation of culture medium, DCFDA kit, and MTT kit 43 2.4.4 Cell Cultures 43 2.4.5 Cellular uptake 44 2.4.6 Pt-DNA binding 44 2.4.7 CLSM images of ROS generation 44 2.4.8 MTT assays 45 Chapter 3 46 3.1 Results and Discussion Material Characterization 46 3.1.1 PXRD Analysis 46 3.1 PXRD patterns of UiO-67(bpy)@CuO2/Ru(bpy)3/Pt(IV) and its precursors. 47 3.1.1 FT-IR Spectroscopy Analysis 47 3.1.3 Zeta Potential 49 3.1.4 Elemental Distribution 51 3.1.5 UV-Vis Absorbance 53 3.1.6 SEM and particle size distribution 54 3.1.8 BET Surface Area Analysis 58 3.2 Cascade reactions of UiO-67(bpy)@CuO2/Ru(bpy)3/Pt(IV) 60 3.2.1 Release of Cu and Pt in GSH solution 60 3.2.2 ROS Generation 61 3.2.3 O2 Generation 62 3.2.4 Cellular uptake 63 3.2.5 Pt-DNA binding 64 3.2.6 CLSM images of ROS generation 65 3.3 Photothermal Efficacy 68 3.3.1 NIR-Mediated Temperature Change 68 3.4 Cancer cell inhibition and biocompatability 71 3.4.1 In-vitro Cytotoxicity 71 Chapter 4 76 4. Conclusion 76 Chapter 5 77 References 77

    (1) Feng, S.; Lu, J.; Wang, K.; Di, D.; Shi, Z.; Zhao, Q.; Wang, S. Advances in smart mesoporous carbon nanoplatforms for photothermal–enhanced synergistic cancer therapy. Chem. Eng. J. 2022, 435, 134886.
    (2) Peng, J.; Xiao, Y.; Li, W.; Yang, Q.; Tan, L.; Jia, Y.; Qu, Y.; Qian, Z. Photosensitizer Micelles Together with IDO Inhibitor Enhance Cancer Photothermal Therapy and Immunotherapy. Adv. Sci. 2018, 5 (5), 1700891.
    (3) Lismont, M.; Dreesen, L.; Wuttke, S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Funct. Mater. 2017, 27 (14), 1606314.
    (4) An, X.; Zhu, A.; Luo, H.; Ke, H.; Chen, H.; Zhao, Y. Rational Design of Multi-Stimuli- Responsive Nanoparticles for Precise Cancer Therapy. ACS Nano 2016, 10 (6), 5947–5958.
    (5) Deng, B.; Ma, P.; Xie, Y. Reduction-sensitive polymeric nanocarriers in cancer therapy: a comprehensive review. Nanoscale 2015, 7 (30), 12773–12795.
    (6) Liu, C. G.; Tang, H. X.; Zheng, X.; Yang, D. Y.; Zhang, Y.; Zhang, J. T.; Kankala, R. K.; Wang, S. B.; Liu, G.; Chen, A. Z. Near-Infrared-Activated Lysosome Pathway Death Induced by ROS Generated from Layered Double Hydroxide-Copper Sulfide Nanocomposites. ACS Appl. Mater. Interfaces. 2020, 12 (36), 40673–40683.
    (7) Zhang, Y.; Ang, C. Y.; Zhao, Y. Polymeric nanocarriers incorporating near-infrared absorbing agents for potent photothermal therapy of cancer. Polym. J. 2016, 48 (5), 589–603.
    (8) Gao, F.; Sun, Z.; Zhao, L.; Chen, F.; Stenzel, M.; Wang, F.; Li, H.; Zhang, L.; Jiang, Y. Bioactive engineered photothermal nanomaterials: from theoretical understanding to cutting-edge application strategies in anti-cancer therapy. Mater. Chem. Front. 2021, 5 (14), 5257–5297.
    (9) Du, J.-Z.; Du, X.-J.; Mao, C.-Q.; Wang, J. Tailor-Made Dual pH-Sensitive Polymer– Doxorubicin Nanoparticles for Efficient Anticancer Drug Delivery. J. Am. Chem. Soc. 2011, 133 (44), 17560–17563.
    (10) Hirsjärvi, S.; Passirani, C.; Benoit, J. P. Passive and active tumor targeting with nanocarriers. Curr. Drug Discov. Technol. 2011, 8 (3), 188–196.
    (11) Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near Infrared Laser- Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods. J. Am. Chem. Soc. 2014, 136 (20), 7317–7326.
    (12) Chen, H.; Xiao, L.; Anraku, Y.; Mi, P.; Liu, X.; Cabral, H.; Inoue, A.; Nomoto, T.; Kishimura, A.; Nishiyama, N.; et al. Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. J. Am. Chem. Soc. 2014, 136 (1), 157–163.
    (13) Zhou, K.; Liu, H.; Zhang, S.; Huang, X.; Wang, Y.; Huang, G.; Sumer, B. D.; Gao, J. Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH Stimuli. J. Am. Chem. Soc. 2012, 134 (18), 7803–7811.
    (14) Yang, J.; Bai, L.; Shen, M.; Gou, X.; Xiang, Z.; Ma, S.; Wu, Q.; Gong, C. A Multiple Stimuli- Responsive NanoCRISPR Overcomes Tumor Redox Heterogeneity to Augment Photodynamic Therapy. ACS Nano 2023, 17 (12), 11414–11426.
    (15) Wang, J.; Sun, X.; Mao, W.; Sun, W.; Tang, J.; Sui, M.; Shen, Y.; Gu, Z. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv. Mater. 2013, 25 (27), 3670–3676.
    (16) Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006, 2 (3), 213–219.
    (17) Cheng, R.; Meng, F.; Deng, C.; Zhong, Z. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 2015, 10 (5), 656–670.
    (18) Kanamala, M.; Wilson, W. R.; Yang, M.; Palmer, B. D.; Wu, Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167.
    (19) Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano- vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release 2011, 152 (1), 2–12.
    (20) Shim, M. S.; Xia, Y. A Reactive Oxygen Species (ROS)-Responsive Polymer for Safe, Efficient, and Targeted Gene Delivery in Cancer Cells. Angew. Chem. Int. Ed. 2013, 52 (27), 6926–6929.
    (21) Manchun, S.; Dass, C. R.; Sriamornsak, P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci 2012, 90 (11-12), 381-387.
    (22) Terry, S.; Engelsen, A. S. T.; Buart, S.; Elsayed, W. S.; Venkatesh, G. H.; Chouaib, S. Hypoxia-driven intratumor heterogeneity and immune evasion. Cancer Lett 2020, 492, 1–10.
    (23) Jun, J. C.; Rathore, A.; Younas, H.; Gilkes, D.; Polotsky, V. Y. Hypoxia-Inducible Factors and Cancer. Curr. Sleep. Med. Rep. 2017, 3 (1), 1–10.
    (24) Han, H. S.; Choi, K. Y. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines 2021, 9 (3)
    (25) Anand, U.; Dey, A.; Chandel, A. K. S.; Sanyal, R.; Mishra, A.; Pandey, D. K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10 (4), 1367–1401.
    (26) Wang, Y.; Wu, W.; Mao, D.; Teh, C.; Wang, B.; Liu, B. Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Image-Guided Photo-Chemo Therapy. Adv. Funct. Mater. 2020, 30 (28), 2002431.
    (27) Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P.; Lee, D. H.; Rabacchi, S. A.; Murray, M. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil. Neural Repair 2008, 22 (3), 262–278.
    (28) Newman, E. M.; Lu, Y.; Kashani-Sabet, M.; Kesavan, V.; Scanlon, K. J. Mechanisms of cross-resistance to methotrexate and 5-fluorouracil in an A2780 human ovarian carcinoma cell subline resistant to cisplatin. Biochem. Pharmacol. 1988, 37 (3), 443–447.
    (29) Barabas, K.; Milner, R.; Lurie, D.; Adin, C. Cisplatin: a review of toxicities and therapeutic applications. Vet. Comp. Oncol. 2008, 6 (1), 1–18.
    (30) Sharma, K. S.; Vimalnath, K. V.; Phadnis, P. P.; Chakravarty, R.; Chakraborty, S.; Dash, A.; Vatsa, R. K. Facile Synthesis of a Pt(IV) Prodrug of Cisplatin and Its Intrinsically (195m)Pt Labeled Analog: A Step Closer to Cancer Theranostic. Indian J. Nucl. Med. 2021, 36 (2), 140– 147.
    (31) Fu, Y.; Kong, Y.; Li, X.; Cheng, D.; Hou, Y.; Li, Y.; Li, T.; Xiao, Y.; Zhang, Q.; Rong, R. Novel Pt(IV) prodrug self-assembled nanoparticles with enhanced blood circulation stability and improved antitumor capacity of oxaliplatin for cancer therapy. Drug Deliv. 2023, 30 (1), 2171158.
    (32) Gately, D. P.; Howell, S. B. Cellular accumulation of the anticancer agent cisplatin: a review. Br. J. Cancer 1993, 67 (6), 1171–1176.
    (33) Ghosh, S. Cisplatin: The first metal-based anticancer drug. Bioorg. Chem. 2019, 88, 102925.
    (34) Bian, W.; Wang, Y.; Pan, Z.; Chen, N.; Li, X.; Wong, W.-L.; Liu, X.; He, Y.; Zhang, K.; Lu, Y.-J. Review of Functionalized Nanomaterials for Photothermal Therapy of Cancers. ACS Appl. Nano Mater. 2021, 4 (11), 11353–11385.
    (35) Macchi, S.; Jalihal, A.; Hooshmand, N.; Zubair, M.; Jenkins, S.; Alwan, N.; El-Sayed, M.; Ali, N.; Griffin, R. J.; Siraj, N. Enhanced photothermal heating and combination therapy of NIR dye via conversion to self-assembled ionic nanomaterials. J. Mater. Chem. B 2022, 10 (5), 806– 816.
    (36) Li, C.; Cheng, Y.; Li, D.; An, Q.; Zhang, W.; Zhang, Y.; Fu, Y. Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies. Int. J. Mol. Sci., 2022; Vol. 23.
    (37) Wen, K.; Tan, H.; Peng, Q.; Chen, H.; Ma, H.; Wang, L.; Peng, A.; Shi, Q.; Cai, X.; Huang, H. Achieving Efficient NIR‐II Type I Photosensitizers for Photodynamic/Photothermal Therapy upon Regulating Chalcogen Elements. Adv. Mater. , 2022, 34, 2108146.
    (38) Moris, D.; Spartalis, M.; Tzatzaki, E.; Spartalis, E.; Karachaliou, G. S.; Triantafyllis, A. S.; Karaolanis, G. I.; Tsilimigras, D. I.; Theocharis, S. The role of reactive oxygen species in myocardial redox signaling and regulation. Ann. Transl. Med., 2017, 5 (16), 324.
    (39) Chen, Q.; Zhou, J.; Chen, Z.; Luo, Q.; Xu, J.; Song, G. Tumor-Specific Expansion of Oxidative Stress by Glutathione Depletion and Use of a Fenton Nanoagent for Enhanced Chemodynamic Therapy. ACS Appl. Mater. Interfaces., 2019, 11 (34), 30551–30565.
    (40) Wang, J.; Gu, Y.; Fan, Y.; Yang, M. Copper-Doped Platinum/Metal-Organic Framework Nanostructures for Imaging-Guided Photothermal and H2O2 Self-Supplying Photodynamic/Photothermal/Chemodynamic Therapy. ACS Appl. Nano Mater. 2023, 6 (14), 13561–13569.
    (41) Gong, T.; Li, Y.; Lv, B.; Wang, H.; Liu, Y.; Yang, W.; Wu, Y.; Jiang, X.; Gao, H.; Zheng, X.; et al. Full-Process Radiosensitization Based on Nanoscale Metal-Organic Frameworks. ACS Nano 2020, 14 (3), 3032–3040.
    (42) Novikova, E. D.; Vorotnikov, Y. A.; Nikolaev, N. A.; Tsygankova, A. R.; Shestopalov, M. A.; Efremova, O. A. The role of gold nanoparticles’ aspect ratio in plasmon-enhanced
    luminescence and the singlet oxygen generation rate of Mo6 clusters. Chem. Commun. 2021, 57 (63), 7770–7773.
    (43) Wang, K. K.; Finlay, J. C.; Busch, T. M.; Hahn, S. M.; Zhu, T. C. Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. J. Biophotonics 2010, 3 (5-6), 304- 318.
    (44) Mestivier, M.; Li, J. R.; Camy, A.; Frangville, C.; Mingotaud, C.; Benoît-Marquié, F.; Marty, J. D. Copper-Based Hybrid Polyion Complexes for Fenton-Like Reactions. Chemistry 2020, 26 (62), 14152–14158.
    (45) He, X.; Li, M.; Fan, S.; Li, Y.; Fang, L.; Xiang, G.; Yang, T. Copper peroxide and cisplatin co-loaded silica nanoparticles-based trinity strategy for cooperative cuproptosis/chemo/chemodynamic cancer therapy. Chem. Eng. J., 2024, 481, 148522.
    (46) Lim, J. Y. C.; Goh, L.; Otake, K.-i.; Goh, S. S.; Loh, X. J.; Kitagawa, S. Biomedically-relevant metal organic framework-hydrogel composites. Biomater. Sci. 2023, 11 (8), 2661–2677.
    (47) Duraisamy, K.; Gangadharan, A.; Martirosyan, K. S.; Sahu, N. K.; Manogaran, P.; Easwaradas Kreedapathy, G. Fabrication of Multifunctional Drug Loaded Magnetic Phase Supported Calcium Phosphate Nanoparticle for Local Hyperthermia Combined Drug Delivery and Antibacterial Activity. ACS Appl. Bio Mater. 2023, 6 (1), 104–116.
    (48) Sozmen, F.; Kucukoflaz, M.; Ergul, M.; Sahin Inan, Z. D. Nanoparticles with PDT and PTT synergistic properties working with dual NIR-light source simultaneously. RSC Adv., 2021, 11 (4), 2383–2389.
    (49) Liu, Z.; Zhang, L.; Sun, D. Stimuli-responsive structural changes in metal-organic frameworks. Chem. Commun. 2020, 56 (66), 9416–9432.
    (50) Vahabi, A. H.; Norouzi, F.; Sheibani, E.; Rahimi-Nasrabadi, M. Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coord. Chem. Rev. 2021, 445, 214050.
    (51) Wang, Y.; Jing, D.; Yang, J.; Zhu, S.; Shi, J.; Qin, X.; Yin, W.; Wang, J.; Ding, Y.; Chen, T.; et al. Glucose oxidase-amplified CO generation for synergistic anticancer therapy via manganese carbonyl-caged MOFs. Acta Biomater. 2022, 154, 467–477.
    (52) Cai, W.; Chu, C. C.; Liu, G.; Wáng, Y. X. Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small 2015, 11 (37), 4806–4822.
    (53) Cao, J.; Li, X.; Tian, H. Metal-Organic Framework (MOF)-Based Drug Delivery. Curr Med Chem 2020, 27 (35), 5949–5969.
    (54) Wu, M.-X.; Yang, Y.-W. Metal–Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29 (23), 1606134.
    (55) Zeng, L.; Gupta, P.; Chen, Y.; Wang, E.; Ji, L.; Chao, H.; Chen, Z.-S. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem. Soc. Rev. 2017, 46 (19), 5771–5804.
    (56) Piccolo, M.; Ferraro, M. G.; Raucci, F.; Riccardi, C.; Saviano, A.; Russo Krauss, I.; Trifuoggi, M.; Caraglia, M.; Paduano, L.; Montesarchio, D.; et al. Safety and Efficacy Evaluation In Vivo ofa Cationic Nucleolipid Nanosystem for the Nanodelivery of a Ruthenium(III) Complex with Superior Anticancer Bioactivity. Cancers (Basel) 2021, 13 (20).
    (57) Thangavel, P.; Viswanath, B.; Kim, S. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors. Int. J. Nanomedicine 2017, 12, 2749–2758.
    (58) Chen, R.; Zhang, J.; Chelora, J.; Xiong, Y.; Kershaw, S. V.; Li, K. F.; Lo, P.-K.; Cheah, K. W.; Rogach, A. L.; Zapien, J. A.; et al. Ruthenium(II) Complex Incorporated UiO-67 Metal– Organic Framework Nanoparticles for Enhanced Two-Photon Fluorescence Imaging and Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces. 2017, 9 (7), 5699–5708.
    (59) Patsenker, L.; Gellerman, G. Fluorescent Reporters for Drug Delivery Monitoring. IIsr. J. Chem. 2020, 60 (5-6), 504–518.
    (60) Daly, H. C.; Conroy, E.; Todor, M.; Wu, D.; Gallagher, W. M.; O'Shea, D. F. An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging. Theranostics 2020, 10 (7), 3064–3082.
    (61) Ma, Y.; Chen, L.; Li, X.; Hu, A.; Wang, H.; Zhou, H.; Tian, B.; Dong, J. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials 2021, 275, 120917.
    (62) Zhou, J.; Liu, L.; Li, Y.; Wang, L.; Xie, Z. Multivariate Strategy Preparation of Nanoscale Ru-Doped Metal–Organic Frameworks with Boosted Photoactivity for Bioimaging and Reactive Oxygen Species Generation. Inorg. Chem. 2022, 61 (11), 4647–4654.
    (63) Li, Y.; Gao, Z.; Chen, F.; You, C.; Wu, H.; Sun, K.; An, P.; Cheng, K.; Sun, C.; Zhu, X.; et al. Decoration of Cisplatin on 2D Metal-Organic Frameworks for Enhanced Anticancer Effects through Highly Increased Reactive Oxygen Species Generation. ACS Appl. Mater. Interfaces. 2018, 10 (37), 30930–30935.
    (64) Ma, Y.; Su, Z.; Zhou, L.; He, L.; Hou, Z.; Zou, J.; Cai, Y.; Chang, D.; Xie, J.; Zhu, C.; et al. Biodegradable Metal–Organic-Framework-Gated Organosilica for Tumor-Microenvironment- Unlocked Glutathione-Depletion-Enhanced Synergistic Therapy. Adv. Mater. 2022, 34 (12), 2107560.
    (65) Ni, K.; Lan, G.; Lin, W. Nanoscale Metal–Organic Frameworks Generate Reactive Oxygen Species for Cancer Therapy. ACS Central Science 2020, 6 (6), 861–868.
    (66) Mocniak, K. A.; Kubajewska, I.; Spillane, D. E. M.; Williams, G. R.; Morris, R. E. Incorporation of cisplatin into the metal–organic frameworks UiO66-NH2 and UiO66 – encapsulation vs. conjugation. RSC Adv. 2015, 5 (102), 83648–83656, 1
    (67) Hu, L.; Xiong, C.; Wei, G.; Yu, Y.; Li, S.; Xiong, X.; Zou, J.-J.; Tian, J. Stimuli-responsive charge-reversal MOF@polymer hybrid nanocomposites for enhanced co-delivery of chemotherapeutics towards combination therapy of multidrug-resistant cancer. J. Colloid Interface Sci. 2022, 608, 1882–1893.
    (68) Xiang, H.; You, C.; Liu, W.; Wang, D.; Chen, Y.; Dong, C. Chemotherapy- enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials 2021, 277, 121071.
    (69) Xing, Y.; Jiang, Z.; Akakuru, O. U.; He, Y.; Li, A.; Li, J.; Wu, A. Mitochondria-targeting zeolitic imidazole frameworks to overcome platinum-resistant ovarian cancer. Colloids Surf. B Biointerfaces 2020, 189, 110837.
    (70) Wen, J.; Yang, K.; Huang, J.; Sun, S. Recent advances in LDH-based nanosystems for cancer therapy. Mater. Des. 2021, 198, 109298.
    (71) Chang, M.; Hou, Z.; Jin, D.; Zhou, J.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Lin, J. Colorectal Tumor Microenvironment-Activated Bio-Decomposable and Metabolizable Cu2O@CaCO3 Nanocomposites for Synergistic Oncotherapy. Adv. Mater. 2020, 32 (43), 2004647.
    (72) Wei, D.; Xiong, D.; Zhu, N.; Wang, Y.; Hu, X.; Zhao, B.; Zhou, J.; Yin, D.; Zhang, Z. Copper Peroxide Nanodots Encapsulated in a Metal–Organic Framework for Self-Supplying Hydrogen Peroxide and Signal Amplification of the Dual-Mode Immunoassay. Anal. Chem. 2022, 94 (38), 12981–12989.
    (73) Huang, H.; Yu, B.; Zhang, P.; Huang, J.; Chen, Y.; Gasser, G.; Ji, L.; Chao, H. Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosome-Localized Photosensitizers for Two-Photon Photodynamic Therapy. Angew. Chem. Int. Ed. 2015, 54 (47), 14049–14052.
    (74) Baggaley, E.; Gill, M. R.; Green, N. H.; Turton, D.; Sazanovich, I. V.; Botchway, S. W.; Smythe, C.; Haycock, J. W.; Weinstein, J. A.; Thomas, J. A. Dinuclear Ruthenium (II) Complexes as Two‐Photon, Time‐Resolved Emission Microscopy Probes for Cellular DNA. Angew. Chem. Int. Ed. 2014, 53 (13), 3367–3371.
    (75) Xu, Z.; Zhao, G.; Ullah, L.; Wang, M.; Wang, A.; Zhang, Y.; Zhang, S. Acidic ionic liquid based UiO-67 type MOFs: a stable and efficient heterogeneous catalyst for esterification. RSC Advances 2018, 8 (18), 10009–10016.
    (76) Islamov, M.; Babaei, H.; Anderson, R.; Sezginel, K. B.; Long, J. R.; McGaughey, A. J. H.; Gomez-Gualdron, D. A.; Wilmer, C. E. High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity. Comput. Mater., 2023, 9 (1), 11.
    (77) Babaei, H.; DeCoster, M. E.; Jeong, M.; Hassan, Z. M.; Islamoglu, T.; Baumgart, H.; McGaughey, A. J.; Redel, E.; Farha, O. K.; Hopkins, P. E. Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates. Nat. Commun. 2020, 11 (1), 4010.
    (78) Huang, J.; Xia, X.; Hu, X.; Li, S.; Liu, K. A general method for measuring the thermal conductivity of MOF crystals. International J. Heat Mass Transf. 2019, 138, 11–16.
    (79) Chang, M.; Hou, Z.; Wang, M.; Wang, M.; Dang, P.; Liu, J.; Shu, M.; Ding, B.; Al Kheraif, A. A.; Li, C.; et al. Cu(2) MoS(4) /Au Heterostructures with Enhanced Catalase-Like Activity and Photoconversion Efficiency for Primary/Metastatic Tumors Eradication by Phototherapy-Induced Immunotherapy. Small 2020, 16 (14), e1907146.
    (80) Liu, L.; Zhang, H.; Xing, S.; Zhang, Y.; Shangguan, L.; Wei, C.; Peng, F.; Liu, X. Copper- Zinc Bimetallic Single-Atom Catalysts with Localized Surface Plasmon Resonance-Enhanced Photothermal Effect and Catalytic Activity for Melanoma Treatment and Wound-Healing. Adv Sci (Weinh) 2023, 10 (18), e2207342.
    (81) Jiang, X.; Zhang, S.; Ren, F.; Chen, L.; Zeng, J.; Zhu, M.; Cheng, Z.; Gao, M.; Li, Z. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging-guided photothermal therapy of cancer. ACS nano 2017, 11 (6), 5633–5645.
    (82) Yi X, Duan QY, Wu FG. Low-Temperature Photothermal Therapy: Strategies and Applications. Research. 2021, 9816594.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE