| 研究生: |
陳奕先 Chen, Yi-Hsien |
|---|---|
| 論文名稱: |
探討合成α-重氮-β-取代乙基膦酸酯之反應機構與以銠金屬催化氮-氫嵌入反應之研究
探討利用藍光促進重氮化合物的偶聯反應 Mechanistic Study on Synthesis of α-Diazoethylphosphonates and Their N-H Insertion Catalyzed by Rh2(OAc)4 Blue Light-Promoted Cross-Coupling Reactions between Diazo Compounds |
| 指導教授: |
周鶴軒
Chou, Ho-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | α-重氮-β-取代乙基膦酸酯 、α-胺基膦酸酯化合物 、銠金屬催化卡賓氮-氫鍵插入反應 、藍光促進偶聯反應 |
| 外文關鍵詞: | α-diazo-β-substituted-ethylphosphonates, α-aminophosphonates, rhodium-catalyzed N-H insertion, the blue light-promoted cross-coupling reaction |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究將分為兩大主題,第一部分我們利用本實驗室所開發較溫和的方法,以DBU(二環[4.3.0]-1, 5-二氮-5-十一烯)促進Seyferth-Gilbert試劑與溴化物進行取代反應,已合成出多樣的α-重氮-β-取代乙基膦酸酯化合物。此反應條件對於官能基的耐受度相當高,不同於以往文獻使用強鹼的條件,此方法能於α-重氮-β-取代乙基膦酸酯的結構上保留較敏感的羰基(如酮、醛、酯)。而在選擇性方面,醛取代的例子顯示溫和的條件使得對溴化物進行取代反應快於Seyferth-Gilbert增碳反應,我們將有效 得到以α-重氮-β-取代乙基膦酸酯化合物為主的產物。
接著,將所合成出的α-重氮-β-取代乙基膦酸酯化合物經由金屬催化劑與苯胺進行氮-氫鍵插入反應以獲得-胺基膦酸酯化合物。此部分主要針對氮-氫鍵插入反應的條件優化探討。經由金屬、溶劑篩選後所得的最佳條件為-重氮--取代乙基膦酸酯與苯胺於甲苯下以銠金屬作為催化劑進行氮-氫鍵插入反應。當我們以鄰甲氧基苯胺取代苯胺所得到的-胺基膦酸酯化合物最終可以經由三氯異氰脲(TCCA)去保護後而得到膦酸酯胺。我們目前已嘗試天冬氨酸所對應的-胺基膦酸酯化合物的去保護反應,而理想的膦酸酯胺化合物目前可以經由萃取後的¹H-NMR光譜中確認獲得。
第二部分為予體/受體類型的重氮乙酸芳基酯與具有酯基/醯胺基的重氮化合物的藍光促進偶聯反應的探討。對於架設藍光促進偶聯反應的裝置方面,我們已嘗試多種不同的裝置提高反應效率,並找出問題加以優化。最後,我們所使用的最佳裝置為將重氮乙酸芳基酯與帶酯基/醯胺基的重氮化合物置於一般試管當中,並以3個5W且波長為450 nm的藍光LED聚光照射整個反應,可以得到理想的三取代雙鍵化合物,而整個反應所需的時間相對於以往的文獻縮短一半,產率相對其他裝置也提升許多。
由整個實驗結果顯示,當予體/受體類型的重氮乙酸芳基酯消耗完畢時,將會剩下許多帶酯基的受體重氮化合物,而以帶醯胺基的受體重氮化合物進行偶聯反應並不會發生此問題。由於本實驗室也合成出許多醯胺基的重氮化合物,我們目前測試了四種不同的官能基(F、Br、OMe、CH₂SEt)。此四種重氮化合物分別對應到各自的紫外-可見分光光度圖譜,如果在可見光區域愈靠近藍光波長450 nm以及具有較大吸收度者,我們推測經藍光照射後可能進行未知的副反應,因而降低三取代雙鍵產物的形成。此外,本身相對敏感的CH₂SEt官能基在此反應中也是能夠順利獲得產物,未來將繼續測試多樣敏感的官能基以及能進行兩端偶聯反應的連接型重氮化合物。
The research would be divided into two themes. In the first part, we have synthesized various α-diazo-β-substituted-ethylphosphonates through the mild condition developed by our laboratory. The method used DBU (1,8-Diazabicyclo[5.4.0]-undec-7-ene) to promote the substitution reaction of Seyferth-Gilbert reagent with bromide compounds. The reaction condition had a high tolerance for functional groups. Different from using strong base condition in the previous literature, our method could retain the more sensitive carbonyl groups such as ketone, aldehyde, and ester, on the structure of α-diazo-β-substituted-ethylphosphonates. In terms of the selectivity, the Sɴ2 substitution reaction was faster than the Seyferth-Gilbert homologation reaction in the case of the benzyl bromide with meta-aldehyde groups. Therefore, we could effectively obtain α-diazo-β-substituted-ethyl-phosphonates under mild condition. Next, the synthesized α-diazo-β-substituted-ethylphosphonates underwent N-H insertion reaction with aniline via rhodium to obtain α-aminophosphonates. When we replace the aniline with 2-methoxyaniline, the α-aminophosphonates could be finally deprotected by trichloroisocyanurate (TCCA) to obtain the amine. We have tried the deprotection reaction of α-aminophosphonates corresponding to aspartic acid. The ideal amine product could only be confirmed by ¹H-NMR spectrum after extraction.
The second part is the synthesis of the blue light-promoted cross-coupling reaction between the aryldiazoacetate (donor/acceptor diazo compound) and the acceptor diazo compound with ester/amide groups to obtain trisubstituted alkene products. We have designed and set up the equipment E of 5W blue LEDs with the wavelength of 450 nm for the blue light-promoted cross-coupling reaction. The time of the reaction was reduced compared to the previous study, and the yield of product was higher with the equipment E. We have demonstrated the reaction of phenyldiazoacetate with amide-substituted diazo compounds with four different functional groups (F, Br, OMe, and CH₂SEt). Based on the individual UV-vis absorption spectrum of the diazo compounds, when the maximum absorbance wavelength in visible region was closer to 450 nm and its absorbance was higher, it may be easily to carry out other side reactions with the irradiation of the blue light. In addition, the functional group of CH₂SEt, which was relatively sensitive, could also successfully obtain products.
[1]. Ye, M.-Y.; Yao, G.-Y.; Pan, Y.-M.; Liao, Z.-X.; Zhang, Y.; Wang, H.-S., Synthesis and antitumor activities of novel α-aminophosphonate derivatives containing an alizarin moiety. European Journal of Medicinal Chemistry 2014, 83, 116-128.
[2]. Mulla, S. A. R.; Pathan, M. Y.; Chavan, S. S.; Gample, S. P.; Sarkar, D., Highly efficient one-pot multi-component synthesis of α-aminophosphonates and bis-α-aminophosphonates catalyzed by heterogeneous reusable silica supported dodecatungstophosphoric acid (DTP/SiO2) at ambient temperature and their antitubercular evaluation against Mycobactrium Tuberculosis. RSC Advances 2014, 4 (15), 7666-7672.
[3]. Tranberg, C. E.; Zickgraf, A.; Giunta, B. N.; Luetjens, H.; Figler, H.; Murphree, L. J.; Falke, R.; Fleischer, H.; Linden, J.; Scammells, P. J.; Olsson, R. A., 2-Amino-3-aroyl-4,5-alkylthiophenes: Agonist Allosteric Enhancers at Human A1 Adenosine Receptors. Journal of Medicinal Chemistry 2002, 45 (2), 382-389.
[4]. Bukšnaitienė, R.; Urbanaitė, A.; Čikotienė, I., Formation of Condensed 1H-Pyrrol-2-ylphosphonates and 1,2-Dihydropyridin-2-ylphosphonates via Kabachnik–Fields Reaction of Acetylenic Aldehydes and Subsequent 5-exo-dig or 6-endo-dig Cyclizations. The Journal of Organic Chemistry 2014, 79 (14), 6532-6553.
[5]. Nakamura, Y.; Ukita, T., Construction of Heterocyclic Compounds by Use of α-Diazophosphonates: New One-Pot Syntheses of Indoles and Isocoumarins. Organic Letters 2002, 4 (14), 2317-2320.
[6]. Kafarski, P.; Lejczak, B., BIOLOGICAL ACTIVITY OF AMINOPHOSPHONIC ACIDS. Phosphorus, Sulfur, and Silicon and the Related Elements 1991, 63 (1-2), 193-215.
[7]. Bhagat, S.; Chakraborti, A. K., An Extremely Efficient Three-Component Reaction of Aldehydes/Ketones, Amines, and Phosphites (Kabachnik−Fields Reaction) for the Synthesis of α-Aminophosphonates Catalyzed by Magnesium Perchlorate. The Journal of Organic Chemistry 2007, 72 (4), 1263-1270.
[8]. Romanenko, V. D.; Kukhar, V. P., Fluorinated Phosphonates: Synthesis and Biomedical Application. Chemical Reviews 2006, 106 (9), 3868-3935.
[9]. Kobayashi, S.; Kiyohara, H.; Nakamura, Y.; Matsubara, R., Catalytic Asymmetric Synthesis of α-Amino Phosphonates Using Enantioselective Carbon−Carbon Bond-Forming Reactions. Journal of the American Chemical Society 2004, 126 (21), 6558-6559.
[10]. Bernardi, L.; Zhuang, W.; Jørgensen, K. A., An Easy Approach to Optically Active α-Amino Phosphonic Acid Derivatives by Chiral Zn(II)-Catalyzed Enantioselective Amination of Phosphonates. Journal of the American Chemical Society 2005, 127 (16), 5772-5773.
[11]. Denmark, S. E.; Chatani, N.; Pansare, S. V., Asymmetric electrophilic amination of chiral phosphorus-stabilized anions. Tetrahedron 1992, 48 (11), 2191-2208.
[12]. Jommi, G.; Miglierini, G.; Pagliarin, R.; Sello, G.; Sisti, M., Studies toward a model for predicting the diastereoselectivity in the electrophilic amination of chiral 1,3,2-oxazaphospholanes. Tetrahedron 1992, 48 (35), 7275-7288.
[13]. Palacios, F.; Aparicio, D.; López, Y.; de los Santos, J. M., Synthesis of functionalized α-amino-phosphine oxides and -phosphonates by addition of amines and aminoesters to 4-phosphinyl- and 4-phosphonyl-1,2-diaza-1,3-butadienes. Tetrahedron 2005, 61 (11), 2815-2830.
[14]. Błażewska, K.; Gajda, T., A concise synthesis of diethyl 1-(tert-butoxycarbonylamino)-1-alkenylphosphonates. Tetrahedron 2004, 60 (51), 11701-11707.
[15]. Ramakrishna, K.; Sivasankar, C., Iridium catalyzed acceptor/acceptor carbene insertion into N–H bonds in water. Organic & Biomolecular Chemistry 2017, 15 (11), 2392-2396.
[16]. Nicolle, S. M.; Moody, C. J., Potassium N-Iodo p-Toluenesulfonamide (TsNIK, Iodamine-T): A New Reagent for the Oxidation of Hydrazones to Diazo Compounds. Chemistry – A European Journal 2014, 20 (15), 4420-4425.
[17]. Pramanik, M. M. D.; Chaturvedi, A. K.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of α-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann–Ohira reagent. Chemical Communications 2014, 50 (85), 12896-12898.
[18]. Pramanik, M. M. D.; Rastogi, N., Synthesis of α-diazo-β-keto esters, phosphonates and sulfones via acylbenzotriazole-mediated acylation of a diazomethyl anion. Organic & Biomolecular Chemistry 2016, 14 (4), 1239-1243.
[19]. Takasu, N., Diazo-mediated Metal Carbenoid Chemistry. http://www.f.u-tokyo.ac.jp/~kanai/seminar/pdf/Lit_Takasu_D2.pdf.
[20]. Ebner, C.; Carreira, E. M., Cyclopropanation Strategies in Recent Total Syntheses. Chemical Reviews 2017, 117 (18), 11651-11679.
[21]. Barluenga, J.; Martínez, S.; Suárez-Sobrino, A. L.; Tomás, M., The [2 + 1] and [4 + 3] Cyclization Reactions of Fulvenes with Fischer Carbene Complexes: New Access to Annulated Cyclopentanones. Journal of the American Chemical Society 2002, 124 (21), 5948-5949.
[22]. Barluenga, J.; Vicente, R.; Barrio, P.; López, L. A.; Tomás, M., Metal-Controlled Selective [3+2] Cyclization Reactions of Alkenyl Fischer Carbene Complexes and Allenes. Journal of the American Chemical Society 2004, 126 (19), 5974-5975.
[23]. Padwa, A.; Hornbuckle, S. F., Ylide formation from the reaction of carbenes and carbenoids with heteroatom lone pairs. Chemical Reviews 1991, 91 (3), 263-309.
[24]. Gillingham, D.; Fei, N., Catalytic X–H insertion reactions based on carbenoids. Chemical Society Reviews 2013, 42 (12), 4918-4931.
[25]. Xia, Y.; Qiu, D.; Wang, J., Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chemical Reviews 2017, 117 (23), 13810-13889.
[26]. Yates, P., The Copper-catalyzed Decomposition of Diazoketones1. Journal of the American Chemical Society 1952, 74 (21), 5376-5381.
[27]. Liu, B.; Zhu, S.-F.; Zhang, W.; Chen, C.; Zhou, Q.-L., Highly Enantioselective Insertion of Carbenoids into N−H Bonds Catalyzed by Copper Complexes of Chiral Spiro Bisoxazolines. Journal of the American Chemical Society 2007, 129 (18), 5834-5835.
[28]. Ferris, L.; Haigh, D.; Moody, C. J., N–H insertion reactions of rhodium carbenoids. Part 2. Preparation of N-substituted amino(phosphoryl)acetates (N-substituted phosphorylglycine esters). Journal of the Chemical Society, Perkin Transactions 1 1996, (24), 2885-2888.
[29]. Wang, J.; Hou, Y.; Wu, P., Intramolecular N–H insertion of α-diazocarbonyls catalyzed by Cu(acac)2: An efficient route to derivatives of 3-oxoazetidines, 3-oxopyrrolidines and 3-oxopiperidines. Journal of the Chemical Society, Perkin Transactions 1 1999, (16), 2277-2280.
[30]. Davis, F. A.; Wu, Y.; Xu, H.; Zhang, J., Asymmetric Synthesis of Cis-5-Substituted Pyrrolidine 2-Phosphonates Using Metal Carbenoid NH Insertion and δ-Amino β-Ketophosphonates. Organic Letters 2004, 6 (24), 4523-4525.
[31]. Ramakrishna, K.; Thomas, J. M.; Sivasankar, C., A Green Approach to the Synthesis of α-Amino Phosphonate in Water Medium: Carbene Insertion into the N–H Bond by Cu(I) Catalyst. The Journal of Organic Chemistry 2016, 81 (20), 9826-9835.
[32]. Ciszewski, Ł. W.; Rybicka-Jasińska, K.; Gryko, D., Recent developments in photochemical reactions of diazo compounds. Organic & Biomolecular Chemistry 2019, 17 (3), 432-448.
[33]. Vaske, Y. S. M.; Mahoney, M. E.; Konopelski, J. P.; Rogow, D. L.; McDonald, W. J., Enantiomerically Pure trans-β-Lactams from α-Amino Acids via Compact Fluorescent Light (CFL) Continuous-Flow Photolysis. Journal of the American Chemical Society 2010, 132 (32), 11379-11385.
[34]. Bernardim, B.; Hardman-Baldwin, A. M.; Burtoloso, A. C. B., LED lighting as a simple, inexpensive, and sustainable alternative for Wolff rearrangements. RSC Advances 2015, 5 (18), 13311-13314.
[35]. Jurberg, I. D.; Davies, H. M. L., Blue light-promoted photolysis of aryldiazoacetates. Chemical Science 2018, 9 (22), 5112-5118.
[36]. Grundmann, C., Über die Zersetzung der Diazoketone. Justus Liebigs Annalen der Chemie 1938, 536 (1), 29-36.
[37]. Font, J.; Serratosa, F.; Valls, J., Intramolecular cyclization of bis-α-diazoketones: a new synthesis of 4-hydroxytropone. Journal of the Chemical Society D: Chemical Communications 1970, (12), 721-722.
[38]. Hodgson, D. M.; Angrish, D., Highly Chemo- and Stereoselective Intermolecular Coupling of Diazoacetates To Give cis-Olefins by Using Grubbs Second-Generation Catalyst. Chemistry – A European Journal 2007, 13 (12), 3470-3479.
[39]. Moulin, S.; Zhang, H.; Raju, S.; Bruneau, C.; Dérien, S., Ruthenium-Catalysed Synthesis of Functional Conjugated Dienes from Propargylic Carbonates and Silyl Diazo Compounds. Chemistry – A European Journal 2013, 19 (10), 3292-3296.
[40]. Hansen, J. H.; Parr, B. T.; Pelphrey, P.; Jin, Q.; Autschbach, J.; Davies, H. M. L., Rhodium(II)-Catalyzed Cross-Coupling of Diazo Compounds. Angewandte Chemie International Edition 2011, 50 (11), 2544-2548.
[41]. Zhang, D.; Xu, G.; Ding, D.; Zhu, C.; Li, J.; Sun, J., Gold(I)-Catalyzed Diazo Coupling: Strategy towards Alkene Formation and Tandem Benzannulation. Angewandte Chemie International Edition 2014, 53 (41), 11070-11074.
[42]. Zhang, Z.; Yu, W.; Wu, C.; Wang, C.; Zhang, Y.; Wang, J., Reaction of Diazo Compounds with Difluorocarbene: An Efficient Approach towards 1,1-Difluoroolefins. Angewandte Chemie International Edition 2016, 55 (1), 273-277.
[43]. Xiao, T.; Mei, M.; He, Y.; Zhou, L., Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds. Chemical Communications 2018, 54 (64), 8865-8868.
[44]. Li, C.; Wang, J., Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidates: Synthesis of 1,3-Diarylpropynes. The Journal of Organic Chemistry 2007, 72 (19), 7431-7434.
[45]. Verkade, J. M. M.; van Hemert, L. J. C.; Quaedflieg, P. J. L. M.; Alsters, P. L.; van Delft, F. L.; Rutjes, F. P. J. T., Mild and efficient deprotection of the amine protecting p-methoxyphenyl (PMP) group. Tetrahedron Letters 2006, 47 (46), 8109-8113.
[46]. Franich, R. A.; Lowe, G.; Parker, J., Photochemical interconversion of some diazo-amides and diazirinecarboxamides. Journal of the Chemical Society, Perkin Transactions 1 1972, (0), 2034-2041.
[47]. Goddard-Borger, E. D.; Stick, R. V., An Efficient, Inexpensive, and Shelf-Stable Diazotransfer Reagent: Imidazole-1-sulfonyl Azide Hydrochloride. Organic Letters 2007, 9 (19), 3797-3800.
[48]. Bélanger, D.; Tong, X.; Soumaré, S.; Dory, Y. L.; Zhao, Y., Cyclic Peptide–Polymer Complexes and Their Self-Assembly. Chemistry – A European Journal 2009, 15 (17), 4428-4436.
[49]. Nahrwold, M.; Bogner, T.; Eissler, S.; Verma, S.; Sewald, N., “Clicktophycin-52”: A Bioactive Cryptophycin-52 Triazole Analogue. Organic Letters 2010, 12 (5), 1064-1067.
[50]. Murai, N.; Yonaga, M.; Tanaka, K., Palladium-Catalyzed Direct Hydroxymethylation of Aryl Halides and Triflates with Potassium Acetoxymethyltrifluoroborate. Organic Letters 2012, 14 (5), 1278-1281.
[51]. Simpson, M. G.; Pittelkow, M.; Watson, S. P.; Sanders, J. K. M., Dynamic combinatorial chemistry with hydrazones: libraries incorporating heterocyclic and steroidal motifs. Organic & Biomolecular Chemistry 2010, 8 (5), 1181-1187.
[52]. Baragaña, B.; Norcross, N. R.; Wilson, C.; Porzelle, A.; Hallyburton, I.; Grimaldi, R.; Osuna-Cabello, M.; Norval, S.; Riley, J.; Stojanovski, L.; Simeons, F. R. C.; Wyatt, P. G.; Delves, M. J.; Meister, S.; Duffy, S.; Avery, V. M.; Winzeler, E. A.; Sinden, R. E.; Wittlin, S.; Frearson, J. A.; Gray, D. W.; Fairlamb, A. H.; Waterson, D.; Campbell, S. F.; Willis, P.; Read, K. D.; Gilbert, I. H., Discovery of a Quinoline-4-carboxamide Derivative with a Novel Mechanism of Action, Multistage Antimalarial Activity, and Potent in Vivo Efficacy. Journal of Medicinal Chemistry 2016, 59 (21), 9672-9685.
[53]. 徐良聖, 利用銠金屬卡賓氮-氫鍵嵌入反應由予體/受體重氮膦酸酯構成α-胺基膦酸酯之研究。 國立成功大學化學系碩士論文 2019.
[54]. Fraile, J. M.; Le Jeune, K.; Mayoral, J. A.; Ravasio, N.; Zaccheria, F., CuO/SiO2 as a simple, effective and recoverable catalyst for alkylation of indole derivatives with diazo compounds. Organic & Biomolecular Chemistry 2013, 11 (26), 4327-4332.
[55]. Cafiero, L. R.; Snowden, T. S., General and Practical Conversion of Aldehydes to Homologated Carboxylic Acids. Organic Letters 2008, 10 (17), 3853-3856.
[56]. Park, J.-e.; Song, C.; Choi, K.; Sim, T.; Moon, B.; Roh, E. J., Synthesis and biological evaluation of novel 3,4-diaryl lactam derivatives as triple reuptake inhibitors. Bioorganic & Medicinal Chemistry Letters 2013, 23 (20), 5515-5518.
[57]. Tsoi, Y.-T.; Zhou, Z.; Yu, W.-Y., Rhodium-Catalyzed Cross-Coupling Reaction of Arylboronates and Diazoesters and Tandem Alkylation Reaction for the Synthesis of Quaternary α,α-Heterodiaryl Carboxylic Esters. Organic Letters 2011, 13 (19), 5370-5373.
[58]. Witzeman, J. S.; Nottingham, W. D., Transacetoacetylation with tert-butyl acetoacetate: synthetic applications. The Journal of Organic Chemistry 1991, 56 (5), 1713-1718.
[59]. Meyer, M. E.; Ferreira, E. M.; Stoltz, B. M., 2-Diazoacetoacetic acid, an efficient and convenient reagent for the synthesis of α-diazo-β-ketoesters. Chemical Communications 2006, (12), 1316-1318.
[60]. Schroen, M.; Bräse, S., Polymer-bound diazonium salts for the synthesis of diazoacetic esters. Tetrahedron 2005, 61 (51), 12186-12192.
[61]. Yoshinaga, Y.; Yamamoto, T.; Suginome, M., Chirality-Switchable 2,2′-Bipyridine Ligands Attached to Helical Poly(quinoxaline-2,3-diyl)s for Copper-Catalyzed Asymmetric Cyclopropanation of Alkenes. ACS Macro Letters 2017, 6 (7), 705-710.
[62]. Chanthamath, S.; Thongjareun, S.; Shibatomi, K.; Iwasa, S., Ru(II)-Pheox catalyzed N–H insertion reaction of diazoacetamides: synthesis of N-substituted α-aminoamides. Tetrahedron Letters 2012, 53 (36), 4862-4865.
[63]. Wang, Y.; Bartlett, M. J.; Denard, C. A.; Hartwig, J. F.; Zhao, H., Combining Rh-Catalyzed Diazocoupling and Enzymatic Reduction To Efficiently Synthesize Enantioenriched 2-Substituted Succinate Derivatives. ACS Catalysis 2017, 7 (4), 2548-2552.
[64]. Xiao, T.; Mei, M.; He, Y.; Zhou, L., Blue light-promoted cross-coupling of aryldiazoacetates and diazocarbonyl compounds. Chem Commun (Camb) 2018, 54 (64), 8865-8868.
[65]. Shang, R.; Ji, D.-S.; Chu, L.; Fu, Y.; Liu, L., Synthesis of α-Aryl Nitriles through Palladium-Catalyzed Decarboxylative Coupling of Cyanoacetate Salts with Aryl Halides and Triflates. Angewandte Chemie International Edition 2011, 50 (19), 4470-4474.
[66]. Tishinov, K.; Schmidt, K.; Häussinger, D.; Gillingham, D. G., Structure-Selective Catalytic Alkylation of DNA and RNA. Angewandte Chemie International Edition 2012, 51 (48), 12000-12004.
[67]. Travelli, C.; Aprile, S.; Rahimian, R.; Grolla, A. A.; Rogati, F.; Bertolotti, M.; Malagnino, F.; di Paola, R.; Impellizzeri, D.; Fusco, R.; Mercalli, V.; Massarotti, A.; Stortini, G.; Terrazzino, S.; Del Grosso, E.; Fakhfouri, G.; Troiani, M. P.; Alisi, M. A.; Grosa, G.; Sorba, G.; Canonico, P. L.; Orsomando, G.; Cuzzocrea, S.; Genazzani, A. A.; Galli, U.; Tron, G. C., Identification of Novel Triazole-Based Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors Endowed with Antiproliferative and Antiinflammatory Activity. Journal of Medicinal Chemistry 2017, 60 (5), 1768-1792.
[68]. Schmidt, J.; Rotter, M.; Weiser, T.; Wittmann, S.; Weizel, L.; Kaiser, A.; Heering, J.; Goebel, T.; Angioni, C.; Wurglics, M.; Paulke, A.; Geisslinger, G.; Kahnt, A.; Steinhilber, D.; Proschak, E.; Merk, D., A Dual Modulator of Farnesoid X Receptor and Soluble Epoxide Hydrolase To Counter Nonalcoholic Steatohepatitis. Journal of Medicinal Chemistry 2017, 60 (18), 7703-7724.
校內:2025-08-12公開