簡易檢索 / 詳目顯示

研究生: 陳永展
Chen, Yung-Chan
論文名稱: 探討 gC1qR 在腸病毒A71 型誘發的細胞凋亡扮演的角色
Investigating the role of gC1qR in Enterovirus A71-induced apoptosis
指導教授: 王憲威
Wang, Shainn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 70
中文關鍵詞: 腸病毒A71型補體受體蛋白(gC1qR)細胞凋亡半胱氨酸蛋白酶3(caspase-3)粒線體
外文關鍵詞: Enterovirus A71, gC1qR, Apoptosis, Caspase-3, Mitochondria
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸病毒71型(EV-A71)是一種無外套模病毒,內含一股單鏈核糖核酸(RNA)包覆於四種結構莢膜蛋白(VP1~VP4)之中。EV-A71感染造成幼童手口足症或是中樞神經系統病變,也曾發現會在不同細胞株中引起粒線體相關的細胞凋亡(apoptosis)訊息及半胱氨酸蛋白酶(caspases)主導的細胞凋亡訊號路徑,是對抗病毒感染是一種很重要的細胞防禦機制。然而在感染時,病毒如何在時空點上利用病毒蛋白和細胞蛋白之間的運作來主導病毒蛋白生合成和細胞凋亡訊號的產生仍然有許多未知。實驗室先前利用合併的串聯親和性蛋白純化技術與質譜儀LC-MS/MS蛋白分析策略,發現了與VP4有交互作用的細胞蛋白網絡複合物。在 39種和VP4有交互作用的關係的宿主細胞蛋白中,receptor of the globular heads of C1q receptor (gC1qR)身份的可信度mascot 得分值最高,而且廣泛分布在細胞之中。我們的先前結果利用免疫共沉澱法及共軛焦顯微鏡影像系統,支持gC1qR和VP4之間親密的交互作用。因此在本研究我們進一步分析此gC1qR蛋白在引起EV-A71感染橫紋肌瘤(RD)細胞的凋亡訊息機制中所造成的影響,因為gC1qR已知會移進粒線體而調節細胞抗病毒防禦機制。首先我們的結果發現在病毒感染劑量為5MOI的狀況之下,內生性gC1qR會和緩的上升並且在感染後4小時開始大量出現病毒結構蛋白,同時也會引起caspase-3活化態增加的現象。其次,減抑gC1qR 基因表達(knockdown)會促使細胞內的病毒VPs產量增加,以及細胞內膜的磷脂絲胺酸(phosphatidyserine, PS)翻轉到細胞外膜的量增加引發細胞凋亡。宿主內的粒腺體膜電位也在較早期便發生變異,這樣的膜電位變異可能是由於病毒蛋白轉移到粒線體之中所導致,甚而引起下游的caspase-3和caspase-9的活化,促使細胞凋亡而抑止了感染進程。這些結果顯示腸病毒感染時gC1qR具有拮抗病毒生成及細胞凋亡的功能。也確實如此,當我們過度表達gC1qR (overexpression),會抑制細胞內的病毒蛋白產成,也會抑制PS蛋白的翻轉。更甚者,過多的gC1qR會抑阻EV-A71感染所引起的膜電位變異,同時細胞質中的病毒蛋白也明顯的減少,也並沒有發現有過多比例的病毒蛋白轉移到粒線體中,且粒線體下游的細胞凋亡訊息路徑 caspase-3和caspase-9的活性也明顯下降。上述結果暗示著內生性gC1qR和VP4之間的交互作用會抑止細胞過早進行凋亡,並可能隨著感染時間愈行負向的調控病毒轉譯或促使病毒蛋白降解,需要再進一步深入探討。本研究初步發現gC1qR在EV-A71感染中隨時間而增加,可在早中期抑阻粒線體相關的細胞凋亡訊息及其下游訊息路徑,也能在中晚期負向參與調控病毒蛋白的生合成。

    Enterovirus A71 (EV-A71) is a non-enveloped virus which contains a single-stranded positive RNA genome encapsidated by four viral structural proteins (VPs), VP1, VP2, VP3 and VP4. Infection of EV-A71 causes an array of childhood diseases with severe neurological manifestations and has been shown to induce mitochondrial-associated apoptotic signaling and caspase-mediated signaling events in many types of cells. Cellular apoptosis is a crucial cellular defense to account for EV-A71 invasion; however, it remains largely unclear the spatiotemporal control of viral and cellular factors that are utilized by invading EV-A71 for the establishment of productive infection versus the initiation of apoptosis. Our lab had previous identified a cellular interactome of VP4 by a combined tandem-tag affinity purification (TAP) technique and LC/MS-MS-based protein identification approach. Among the 39 VP4-interacting cellular candidates, receptor of the globular heads of C1q complement (gC1qR) shows the highest identification fidelity and is ubiquitously present in cells. Our previous finding supports intimate gC1qR-VP4 interaction and co-localization in cytoplasm and mitochondria in infected RD cells by immunoprecipitation and confocal imagines. In this study, we step further the role of gC1qR in mitochondria-associated apoptosis, because gC1qR is capable of entering mitochondria to modulate cellular defense machinery. Firstly, our results found that infection of RD cells with 5 MOI of EV-A71 resulted in increased qC1qR and viral structural protein during the productive phase of viral growth within 4-8 hours. The caspase-3 was also activated after 4 hours post-infection. EV-A71 infection of gC1qR-knockdown RD cells, in comparison to infected sh-control cells, promoted intracellular VPs production and numbers of apoptotic cells with flipped phosphatidylserine (PS) protein on the outer cell membrane. Moreover, VPs were found to translocate to the mitochondria which may cause mitochondrial stress, as mitochondrial membrane potential were lost quickly after infection, alone with increasing levels of cleaved forms of caspase-9 and caspase-3. These results suggested that gC1qR is required to negatively modulate EV-A71-induced apoptosis and productive viral production in RD cells. Indeed, EV-A71 infection of gC1qR-overexpressing RD cells, in comparison to infected RD cells, resulted in decreased VPs and membrane PS translocation. Also, gC1qR-overexpression protected the loss of MMP that occurred during EV-A71 infection, which accompanied with decreased VPs in the cytosolic and mitochondrial fraction, as well as decreased activation of caspase-9 and caspase-3. These results implied that endogenous gC1qR may interact with VP4 to retard early apoptosis and accumulate through time to negatively modulate intracellular VPs biogenesis via viral translation or cellular degradation machinery, yet the in-depth mechanism remains to be clarified. In conclusion, this study provides a preliminary evidence that gC1qR has a novel role during EV-A71 infection to spatiotemporally modulate cellular apoptosis. EV-A71-induced mitochondria-associated downstream apoptotic signaling can be retarded through overexpressing gC1qR, which is likely to be critical for EV-A71 to establish early- to mid-stage (4-6 h) of intracellular viral production, while accumulated gC1qR is capable of negative modulating viral protein production, which is likely to occur during mid- to late-stage (6-8 h) of infection when viral protein production is no longer needed.

    摘要 ..................................................................................................................................................... I ABSTRACT ..................................................................................................................................... III ACKNOWLEDGEMENTS ............................................................................................................. V INDEX .............................................................................................................................................. VI FIGURE INDEX ........................................................................................................................... VIII INTRODUCTION ............................................................................................................................ 1 Enterovirus A71 (EV-A71) infection and outbreak ....................................................................... 1 EV-A71 genome organization and structural proteins VP1-VP4 production ................................ 2 Functional relevance of VP1-VP4 in neutralizing antibody induction and viral entry .................. 3 Cellular factors critical for viral life cycle after EV-A71 entry ..................................................... 4 Enterovirus A71 and Apoptosis ..................................................................................................... 5 Globular heads of C1q complement Receptor, gC1qR .................................................................. 7 Preliminary supporting evidence for the importance of gC1qR in EV-A71 infection ................... 8 Hypothesis ...................................................................................................................................... 9 MATERIALS AND METHODS ................................................................................................... 10 Antibodies .................................................................................................................................... 10 Reagents ....................................................................................................................................... 11 Human Rhabdomyosarcoma (RD) cells culture ........................................................................... 11 Enterovirus A71 (EV-A71) .......................................................................................................... 12 Plaque assay and viral titer ........................................................................................................... 12 Plasmid transfection and gC1qR-overexpression ......................................................................... 13 gC1qR-knockdown by lentiviral shRNA ...................................................................................... 14 Western blot assay ........................................................................................................................ 15 Annexin V/PI staining .................................................................................................................. 16 Mitochondrial membrane potential (MMP, Δψ) analysis ............................................................ 17 VII Subcellular fractionation of cells .................................................................................................. 18 Statistical analysis ........................................................................................................................ 19 RESULTS ........................................................................................................................................ 20 Cellular gC1qR is a EV-A71 VP4-interacting protein and gC1qR-VP4 interaction is independent of cellular and viral RNA molecules ............................................................................................ 20 Endogenous gC1qR and cleaved caspase-3 are up regulated in RD cells during productive EV-A71 replication ...................................................................................................................... 21 gC1qR is a negative modulator for intracellular viral protein production during EV-A71 infection ........................................................................................................................................ 22 gC1qR-knockdown, in contrast to gC1qR-overexpression, promotes EV-A71 induced apoptosis cells ............................................................................................................................................... 24 gC1qR functions to maintain mitochondrial membrane potential during EV-A71 infection ...... 26 Decreased gC1qR promotes the translocation of VPs to mitochondrial during productive viral growth ........................................................................................................................................... 28 RD cells deficient in gC1qR causes increased and sustained caspase-3 and -9 activation, while gC1qR-overexpression cells suppress caspases activation during EV-A71 infection .................. 31 DISCUSSION ................................................................................................................................. 33 REFFERENCES ............................................................................................................................. 38 FIGURES ........................................................................................................................................ 45 APPENDIX ..................................................................................................................................... 66 CURRICULUM VITAE ................................................................................................................ 70

    1. Shih SR, Stollar V, Li ML. 2011. Host factors in enterovirus 71 replication. J Virol 85:9658-9666.
    2. Yamayoshi S, Ohka S, Fujii K, Koike S. 2013. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol 87:3335-3347.
    3. Lin T-Y, Twu S-J, Ho M-S, Chang L-Y, Lee C-Y. 2003. Enterovirus 71 outbreaks, Taiwan occurrence and recognition. Emerg Infect Diseases 9.
    4. Peter McMinn IS, Lakshmi Nagarajan,and Stephen Davis. 2000. Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in western australia. Clin Infect Dis 32:236-242.
    5. Shih-Min Wang H-YL, Kao-Jean Huang, Jing-Ming Wu, Jen-Ren Wang, Chun-Keung Yu, Ih-Jen Su,and Ching-Chuan Liu. 2003. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and
    cellular immune activation in atients with pulmonary edema. J Infect Dis 88:564-570.
    6. Saraswathy Sabanathan LVT, Louise Thwaites, Bridget Wills, Phan Tu Qui, H Rogier van Doorn. 2014. Enterovirus 71 related severe hand, foot and mouth disease outbreaks in South-East Asia: current situation and ongoing challenges. J
    Epidemiol Community Health 0:1-3.
    7. Hwang YC, Chen W, Yates MV. 2006. Use of fluorescence resonance energy transfer for rapid detection of enteroviral infection in vivo. Appl Environ Microbiol
    72:3710-3715.
    8. Anderson NEBaDA. 1993. RNA-dependent cleavage of VP0 capsid protein in provirions of hepatitis A virus. Virology 197:616-623.
    9. Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. 2011. Crystal structure of human enterovirus 71 3C protease. J Mol Biol 408:449-461.
    10. NIKOLAJ BLOM, JAN HANSEN, BLAAS D, BRUNAK SR. 1996. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Science 5:2203-1216.
    11. Liu Q, Huang X, Ku Z, Wang T, Liu F, Cai Y, Li D, Leng Q, Huang Z. 2013. Characterization of enterovirus 71 capsids using subunit protein-specific polyclonal
    antibodies. J Virol Methods 187:127-131.
    12. Chehadeh W, Lobert PE, Sauter P, Goffard A, Lucas B, Weill J, Vantyghem MC, Alm G, Pigny P, Hober D. 2005. Viral protein VP4 is a target of human antibodies enhancing coxsackievirus B4- and B3-induced synthesis of alpha
    interferon. J Virol 79:13882-13891.
    13. Danthi P, Tosteson M, Li Qh, Chow M. 2003. Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. Journal of Virology 77:5266-5274.
    14. QIHAN LI AGY, YOUNG MIE-HA LEE, JAMES HOGLE, AND MARIE
    CHOW'. 1994. Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol:3965-3970.
    15. Chunfu Yang CD, Junfeng Wan, Liye Zhu and Qibin Leng. Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications. Virol J 8.
    16. Tan S, Tan X, Sun X, Lu G, Chen CC, Yan J, Liu J, Xu W, Gao GF. 2013. VP2 dominated CD4+ T cell responses against enterovirus 71 and cross-reactivity
    against coxsackievirus A16 and polioviruses in a healthy population. J Immunol
    40
    191:1637-1647.
    17. Miao Zhao YB, Wei Liu, Xiangqian Xiao, Yuming Huang, Shan Cen, Paul KS
    Chan, Xin Sun, Wang Shengand Yi Zeng. 2013. Immunization of N terminus of
    enterovirus 71 VP4 elicits cross-protective antibody responses. BMC Microbiol 13.
    18. HOGLE CEFAJM. 1990. Cell-induced conformational change in polivirus:
    externalization of the amino terminus of VP1 is responsible for liposome binding. J
    Virol 64:1934-1945.
    19. Hogle JM CM, Filman DJ. 1985. Three-dimensional structure of poliovirus at 2.9
    A resolution. Scinece 229.
    20. Shingler KL, Yoder JL, Carnegie MS, Ashley RE, Makhov AM, Conway JF,
    Hafenstein S. 2013. The enterovirus 71 A-particle forms a gateway to allow
    genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog
    9:e1003240.
    21. Yamayoshi S, Fujii K, Koike S. 2014. Receptors for enterovirus 71. Emerg
    Microbes Infect 3:e53.
    22. Hsiao HB, Chou AH, Lin SI, Lien SP, Liu CC, Chong P, Chen CY, Tao MH,
    Liu SJ. 2014. Delivery of human EV71 receptors by adeno-associated virus
    increases EV71 infection-induced local inflammation in adult mice. Biomed Res
    Int 2014:878139.
    23. Wu CY, Lin YW, Kuo CH, Liu WH, Tai HF, Pan CH, Chen YT, Hsiao PW,
    Chan CH, Chang CC, Liu CC, Chow YH, Chen JR. 2015. Inactivated
    Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier
    Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2
    Transgenic Mouse. PLoS One 10:e0136420.
    24. Bergelson JM EE, Domingo E, Roos RP. 2010. The Picornaviruses.73-86.
    41
    25. Lin JY, Li ML, Huang PN, Chien KY, Horng JT, Shih SR. 2008. Heterogeneous
    nuclear ribonuclear protein K interacts with the enterovirus 71 5' untranslated
    region and participates in virus replication. J Gen Virol 89:2540-2549.
    26. Lin J-Y, Shih S-R. 2014. Cell and tissue tropism of enterovirus 71 and other
    enterovirus infections. J Biol Sci 21.
    27. Yang SL, Chou YT, Wu CN, Ho MS. 2011. Annexin II binds to capsid protein
    VP1 of enterovirus 71 and enhances viral infectivity. J Virol 85:11809-11820.
    28. Joshi A, Lee RT, Mohl J, Sedano M, Khong WX, Ng OT, Maurer-Stroh S,
    Garg H. 2014. Genetic signatures of HIV-1 envelope-mediated bystander apoptosis.
    J Biol Chem 289:2497-2514.
    29. Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281:1309-1312.
    30. Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol
    35:495-516.
    31. Wang X, Tan J, Zoueva O, Zhao J, Ye Z, Hewlett I. 2014. Novel pandemic
    influenza A (H1N1) virus infection modulates apoptotic pathways that impact its
    replication in A549 cells. Microbes Infect 16:178-186.
    32. Aweya JJ, Sze CW, Bayega A, Mohd-Ismail NK, Deng L, Hotta H, Tan YJ.
    2015. NS5B induces up-regulation of the BH3-only protein, BIK, essential for the
    hepatitis C virus RNA replication and viral release. Virology 474:41-51.
    33. Zhang H, Li F, Pan Z, Wu Z, Wang Y, Cui Y. 2014. Activation of PI3K/Akt
    pathway limits JNK-mediated apoptosis during EV71 infection. Virus Res
    192:74-84.
    34. Li Z, Yu J, Liu L, Wei Z, Ehrlich ES, Liu G, Li J, Liu X, Wang H, Yu XF,
    Zhang W. 2014. Coxsackievirus A16 infection induces neural cell and non-neural
    cell apoptosis in vitro. PLoS One 9:e111174.
    42
    35. Chau DHW, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, Sall A, Yang D. 2006.
    Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through
    mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis
    12:513-524.
    36. Uday Kishore, Reid KBM. 2000. C1q structure, function, and receptors.
    Immunopharmacology 49:159-170.
    37. Meenakshi J, Anupama, Goswami SK, Datta K. 2003. Constitutive expression of
    hyaluronan binding protein 1 (HABP1/p32/gC1qR) in normal fibroblast cells
    perturbs its growth characteristics and induces apoptosis. Biochem Biophys Res
    Commun 300:686-693.
    38. Watthanasurorot A, Jiravanichpaisal P, Soderhall K, Soderhall I. 2013. A
    calreticulin/gC1qR complex prevents cells from dying: a conserved mechanism
    from arthropods to humans. J Mol Cell Biol 5:120-131.
    39. Xu L, Xiao N, Liu F, Ren H, Gu J. 2009. Inhibition of RIG-I and
    MDA5-dependent antiviral response by gC1qR at mitochondria. Proc Natl Acad
    Sci U S A 106:1530-1535.
    40. Belgnaoui SM, Paz S, Hiscott J. 2011. Orchestrating the interferon antiviral
    response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin
    Immunol 23:564-572.
    41. Koshiba T, Bashiruddin N, Kawabata S. 2011. Mitochondria and antiviral innate
    immunity. Int J Biochem Mol Biol 2:257-262.
    42. Gao LJ, Gu PQ, Fan WM, Liu Z, Qiu F, Peng YZ, Guo XR. 2011. The role of
    gC1qR in regulating survival of human papillomavirus 16 oncogene-transfected
    cervical cancer cells. Int J Oncol 39:1265-1272.
    43. Gao L-j, Gu P-q, Zhao W, Ding W-y, Zhao X-q, Guo S-y, Zhong T-y. 2013. The
    43
    role of globular heads of the C1q receptor in HPV 16 E2-induced human cervical
    squamous carcinoma cell apoptosis is associated with p38 MAPK JNK activation. J
    Transl Med 11.
    44. Liu Z, Kato A, Oyama M, Kozuka-Hata H, Arii J, Kawaguchi Y. 2015. Role of
    host cell p32 in herpes simplex virus 1 de-envelopment during viral nuclear
    egress. J Virol 89:8982-8998.
    45. Yao ZQ, Waggoner SN, Cruise MW, Hall C, Xie X, Oldach DW, Hahn YS.
    2005. SOCS1 and SOCS3 are targeted by hepatitis C virus core/gC1qR ligation to
    inhibit T-cell function. J Virol 79:15417-15429.
    46. Beatch MD, Everitt JC, Law LJ, Hobman TC. 2005. Interactions between
    rubella virus capsid and host protein p32 are important for virus replication. J Virol
    79:10807-10820.
    47. Luhrmann A, Nogueira CV, Carey KL, Roy CR. 2010. Inhibition of
    pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. PNAS
    107:18997-19001.
    48. En-Ju L. 2015. The complement receptor gC1qR interacts with Enterovirus A71
    VP4 and modulates viral multiplication and cytokine regulation.
    49. Choi Y, Kwon Y-C, Kim S-I, Park J-M, Lee K-H, Ahn B-Y. 2008. A hantavirus
    causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient
    cell binding and infection. Virology 381:178-183.
    50. Wang Y, Guo SY, Gu PQ, Wang XM, Sun N, Gao LJ. 2014. The globular heads
    of the C1q receptor regulate apoptosis in human extravillous
    cytotrophoblast-derived transformed cells via a mitochondria-dependent pathway.
    Am J Reprod Immunol 71:73-85.
    51. West AP, Shadel GS, Ghosh S. 2011. Mitochondria in innate immune responses.
    44
    Nat Rev Immunol 11:389-402.
    52. Jacobs JL, Coyne CB. 2013. Mechanisms of MAVS regulation at the
    mitochondrial membrane. J Mol Biol 425:5009-5019.
    53. Kuo RL, Kao LT, Lin SJ, Wang RY, Shih SR. 2013. MDA5 plays a crucial role
    in enterovirus 71 RNA-mediated IRF3 activation. PLoS One 8:e63431.
    54. Watthanasurorot A, Guo E, Tharntada S, Lo CF, Soderhall K, Soderhall I.
    2014. Hijacking of host calreticulin is required for the white spot syndrome virus
    replication cycle. J Virol 88:8116-8128.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE