| 研究生: |
林世倫 Lin, Shih-Lun |
|---|---|
| 論文名稱: |
汽油車輛引擎尾氣微粒特徵研究 Characteristics of Particulate Matters in Gasoline Vehicle Exhaust |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 汽油車 、引擎尾氣微粒 、排放係數 、微粒成份 |
| 外文關鍵詞: | Gasoline vehicle emission, Particulate matters, Emission factors, PM composition |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討使用中汽油引擎機動車輛排放微粒與氣態污染物(CO、HC與NOx) 特徵,測試四行程機車(四部;適用不同期別排放標準)與汽車(三部)在怠速與定轉速條件之引擎排放尾氣污染;以EA、IC與ICP-OES分析微粒之化學組成(包括:EC、OC、水溶性離子、金屬元素),建構本土化汽油車輛引擎廢氣微粒指紋資料。
研究結果顯示:機車引擎廢氣微粒濃度在0.070~1.070 mg/Nm^3間,適用二期放標準機車排放濃度達2.5 mg/Nm^3;汽車引擎廢氣微粒濃度在0.007~0.086 mg/Nm^3間。測試車微粒濃度重複實驗誤差值CoV皆在30%以下。機車引擎排放微粒皆高於汽車,在怠速與定轉速狀態,機車平均排放微粒濃度分別為汽車濃度之6倍與16倍。適用二期標準機車於定轉速狀態之平均排放微粒濃度約為五期與六期機車測試值之3~6倍。汽油引擎在怠速狀態之排放微粒濃度最低,在定轉速狀態之微粒濃度呈現隨轉速升高而降低趨勢。各測試車排放濃度則有明顯差距,顯示在相同操作條件,不同引擎型式、排放控制設備、保養狀況皆為可能造成排放微粒濃度差異的主要原因。
推估機車與汽車於怠速型態之微粒排放係數為4.6921±1.8772 與0.4742±0.3154 mg/kg-fuel;定轉速(行駛期間)排放係數分別為0.4100±0.4202與0.1076±0.0769 mg/km。 研究觀察分析空燃比與尾氣微粒濃度相關性顯示,當λ≥1時,引擎尾氣微粒濃度快速降低。機車於定轉速狀態,引擎尾氣微粒濃度與HC及CO濃度具正相關,兩者相關係數皆>0.95,p-value<0.01,顯示機車尾氣出現高濃度CO或HC,亦將伴隨排放較高濃度微粒。此外,研究結果顯示,機車引擎尾氣之微粒、HC與CO濃度皆高於汽車引擎尾氣濃度。
分析引擎廢氣微粒之碳成分、水溶性離子、金屬元素佔微粒質量百分比分別為40 ~ 74%、 0 ~ 9%與1 ~ 23%。引擎廢氣微粒主要成份為有機碳(OC),主要水溶性離子為NO3-、SO42-、NH4+與Cl-,主要金屬元素為Fe、Ca與Mg。微粒OC比例與引擎轉速相關,怠速型態之微粒碳成分以OC為主,引擎轉速提高則呈現OC佔總碳比例下降現象。
This study investigated the characteristics of particulate matter (PM) in the engine exhaust emitted from four-stroke motorcycles and gasoline vehicles. The emission factors of PM, CO, HC, NOX were also estimated by emission tests. Composition of PM, includes carbon component, water-soluble ions, metals, were also analyzed. Test vehicles included six motorcycles and three gasoline vehicles. Emission tests were under various engine speeds with controlled conditions. The average PM concentration for motorcycles and gasoline vehicles were 0.218~0.887 mg/Nm^3 and 0.034~0.054 mg/Nm^3, respectively. The average PM emission factor for motorcycles and gasoline vehicles was 0.410 mg/km and 0.108 mg/km, respectively. Lower concentration of PM was observed during idling mode, and the concentration would decrease as increasing engine speed. The results of test data were with confidence of CoV < 30%. Results of PM composition showed that organic carbon (OC) and element carbon (EC) were the major components of engine exhaust particles. The dominant compositions were carbon components (40~74%), water-soluble ions (0~9%), and metal elements (1~23%), respectively. The ratio of OC/EC was around 1.27. NO3-, SO42- and NH4+ were the major compositions of water-soluble ions group in the engine particles. Fe, Ca, and Mg were the major metal elements in engine particles. The OC ratio in particulate would be related to the engine speed.
8891新車. (2018). 汽車百科. Retrieved from https://c.8891.com.tw/pedia/5/tid/196
Alkidas, A. C. (2007). Combustion advancements in gasoline engines. Energy Conversion and Management, 48(11), 2751-2761.
Andrews, G., Abbass, M., Williams, P., & Bartle, K. (1989). Factors influencing the composition of the organic fraction of diesel particulates. Journal of aerosol science, 20(8), 1373-1376.
ARAI, P. (2009). Air Quality Monitoring Project-Indian Clean Air Programme (ICAP) Draft Final Report on“SOURCE PROFILING FOR VEHICULAR EMISSIONS”. ( ARAI/VSP-III/SP/RD/08-09/60).
ARTC. (2014). 可變進氣系統介紹. 環保能源電子報.
Atribak, I., Such-Basáñez, I., Bueno-López, A., & García, A. (2007). Comparison of the catalytic activity of MO2 (M=Ti, Zr, Ce) for soot oxidation under NOx/O2. Journal of Catalysis, 250(1), 75-84.
Awad, O. I., Ma, X., Kamil, M., Ali, O. M., Zhang, Z., & Shuai, S. (2020). Particulate emissions from gasoline direct injection engines: A review of how current emission regulations are being met by automobile manufacturers. Science of The Total Environment, 137302.
Bielaczyc, P., Woodburn, J., & Szczotka, A. (2016). Exhaust emissions of gaseous and solid pollutants measured over the NEDC, FTP-75 and WLTC chassis dynamometer driving cycles (No. 2016-01-1008). SAE Technical Paper.
Bonandrini, G., Di Gioia, R., Papaleo, D., & Venturoli, L. (2012). Numerical study on multiple injection strategies in DISI engines for particulate emission control.
Borken-Kleefeld, J., & Chen, Y. (2015). New emission deterioration rates for gasoline cars–Results from long-term measurements. Atmospheric Environment, 101, 58-64.
Cadle, S. H., Mulawa, P., Groblicki, P., Laroo, C., Ragazzi, R. A., Nelson, K., . . . Zielinska, B. (2001). In-use light-duty gasoline vehicle particulate matter emissions on three driving cycles. Environmental science & technology, 35(1), 26-32.
Calcagno, J. A. (2005). Evaluation of heavy-duty diesel vehicle emissions during cold-start and steady-state idling conditions and reduction of emissions from a truck-stop electrification program. PhD diss., University of Tennessee.
Canepari, S., Perrino, C., Olivieri, F., & Astolfi, M. L. (2008). Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmospheric Environment, 42(35), 8161-8175.
Chase, R. E., Duszkiewicz, G. J., Richert, J. F., Lewis, D., Maricq, M. M., & Xu, N. (2004). PM measurement artifact: organic vapor deposition on different filter media (No. 2004-01-0967). SAE Technical Paper.
Afton chemical. (2020). Port Fuel Injection vs. Gasoline Direct Injection. Retrieved from https://www.aftonchemical.com/Generic/PFI-vs-GDI?lang=en-US
Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., & Chen, C. (2016). Beyond PM2.5: the role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860(12), 2844-2855.
Chen, S.-J., Jian, W.-J., Huang, Y.-C., Hsieh, C.-C., Shue, M.-F., & Wei, B.-L. (2001). PAHs and aerosol carbons in the exhaust of a gasoline powered engine. Aerosol and Air Quality Resarch, 1(1), 57-67.
Cheng, M.-T., Chen, H.-J., Young, L.-H., Yang, H.-H., Tsai, Y. I., Wang, L.-C., Chen, C.-B. (2015). Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads. Journal of hazardous materials, 297, 234-240.
Cheung, K., Ntziachristos, L., Tzamkiozis, T., Schauer, J., Samaras, Z., Moore, K., & Sioutas, C. (2010). Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Science and Technology, 44(7), 500-513.
Cheung, K. L., Polidori, A., Ntziachristos, L., Tzamkiozis, T., Samaras, Z., Cassee, F. R., Sioutas, C. (2009). Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environmental science & technology, 43(16), 6334-6340.
Chiang, H.-L., Lai, Y.-M., & Chang, S.-Y. (2012). Pollutant constituents of exhaust emitted from light-duty diesel vehicles. Atmospheric Environment, 47, 399-406.
Coburn, T. C. (2000). Statistical analysis of on-road particulate matter emissions from diesel vehicles. Inhalation toxicology, 12(sup2), 23-33.
Colberg, C. A., Tona, B., Catone, G., Sangiorgio, C., Stahel, W. A., Sturm, P., & Staehelin, J. (2005). Statistical analysis of the vehicle pollutant emissions derived from several European road tunnel studies. Atmospheric Environment, 39(13), 2499-2511.
Colberg, C. A., Tona, B., Stahel, W. A., Meier, M., & Staehelin, J. (2005). Comparison of a road traffic emission model (HBEFA) with emissions derived from measurements in the Gubrist road tunnel, Switzerland. Atmospheric Environment, 39(26), 4703-4714.
Dey, S., Di Girolamo, L., van Donkelaar, A., Tripathi, S., Gupta, T., & Mohan, M. (2012). Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: A remote sensing approach. Remote sensing of environment, 127, 153-161.
New World Encyclopedia. (2019). Carburetor.
Retrieved from https://www.newworldencyclopedia.org/entry/Carburetor#cite_note-1
Europe, U. N. E. C. f. (2011). Uniform provisions concerning the approval of vehicles with regard to the emission of pollutants according to engine fuel requirements. (UN/ECE Regulation No 83).
Favre, C., Bosteels, D., May, J., De Souza, I., Beale, L., & Andersson, J. (2009a). An emissions performance evaluation of State-of-the-Art motorcycles over EURO 3 and WMTC Drive cycles (0148-7191).
Finkelstein, M. M., Jerrett, M., & Sears, M. R. (2004). Traffic air pollution and mortality rate advancement periods. Am J Epidemiol, 160(2), 173-177.
Fuzzi, S., Andreae, M., Huebert, B., Kulmala, M., Bond, T. C., Boy, M., . . . Kawamura, K. (2006). Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmospheric Chemistry and Physics, 6(7), 2017-2038.
Gauthier, M. (1977). Solid-State Detectors for the Potentiometric Determination of Gaseous Oxides. Journal of The Electrochemical Society, 124(10), 1579.
Geller, M. D., Ntziachristos, L., Mamakos, A., Samaras, Z., Schmitz, D. A., Froines, J. R., & Sioutas, C. (2006). Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmospheric Environment, 40(36), 6988-7004.
Giechaskiel, B., Dilara, P., & Andersson, J. (2008). Particle measurement programme (PMP) light-duty inter-laboratory exercise: Repeatability and reproducibility of the particle number method. Aerosol Science and Technology, 42(7), 528-543.
Giechaskiel, B., Maricq, M., Ntziachristos, L., Dardiotis, C., Wang, X., Axmann, H., Schindler, W. (2014). Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. Journal of aerosol science, 67, 48-86.
Giovanetti, A. J., Ekchian, J. A., Heywood, J. B., & Fort, E. F. (1983). Analysis of hydrocarbon emissions mechanisms in a direct injection spark-ignition engine. SAE transactions, 925-947.
Gray, C. (1988). A Review of Variable Engine Valve Timing. SAE transactions, 97, 631-641.
Habib, G. (2017). Chemical and optical properties of PM2. 5 from on-road operation of light duty vehicles in Delhi city. Science of The Total Environment, 586, 900-916.
Hao, Y., Gao, C., Deng, S., Yuan, M., Song, W., Lu, Z., & Qiu, Z. (2019). Chemical characterisation of PM2.5 emitted from motor vehicles powered by diesel, gasoline, natural gas and methanol fuel. Science of The Total Environment, 674, 128-139.
Haynes, D., Bartok, W., & Sarofim, A. (1991). Fossil fuel combustion. In: Wiley-Interscience: New York.
Hester, R., & Harrison, R. (2016). Airborne Particulate Matter: Sources, Atmospheric Processes and Health (Vol. 42): Royal Society of Chemistry.
Hilliard, J. C., & Wheeler, R. W. (1979). Nitrogen dioxide in engine exhaust. SAE transactions, 2343-2354.
Huang, C., Lou, D., Hu, Z., Feng, Q., Chen, Y., Chen, C., Yao, D. (2013). A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline-and diesel-fueled vehicles. Atmospheric Environment, 77, 703-710.
Huang, C., Tao, S., Lou, S., Hu, Q., Wang, H., Wang, Q., Zhou, L. (2017). Evaluation of emission factors for light-duty gasoline vehicles based on chassis dynamometer and tunnel studies in Shanghai, China. Atmospheric Environment, 169, 193-203.
Jia, L.-W., Shen, M.-Q., Wang, J., & Lin, M.-Q. (2005). Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of hazardous materials, 123(1-3), 29-34.
Jimenez, J. L., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J. H., Ng, N. (2009). Evolution of organic aerosols in the atmosphere. Science, 326(5959), 1525-1529.
Khajepour, A., Fallah, M. S., & Goodarzi, A. (2014). Electric and hybrid vehicles: technologies, modeling and control-A mechatronic approach.
Kim, H. J., Lee, J. T., Lim, Y., Keel, J., Hong, Y., & Roh, H. G. (2019). A Comparison on Emission Characteristics between Passenger Car Using Gasoline (Including HEV) and Diesel Fuel according to the Various Test Mode (No. 2019-01-1408). SAE Technical Paper.
Kim, J., Choi, K., Myung, C.-L., Lee, Y., & Park, S. (2013). Comparative investigation of regulated emissions and nano-particle characteristics of light duty vehicles using various fuels for the FTP-75 and the NEDC mode. Fuel, 106, 335-343.
Kittelson, D. B. (1998). Engines and nanoparticles: a review. Journal of aerosol science, 29(5-6), 575-588.
Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S. D., & Finlayson-Pitts, B. J. (2003). Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science, 301(5631), 340-344.
Leach, F., Stone, R., Fennell, D., Hayden, D., Richardson, D., & Wicks, N. (2017). Predicting the particulate matter emissions from spray-guided gasoline direct-injection spark ignition engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(6), 717-730.
Mallick, P. K. (2010). Materials, design and manufacturing for lightweight vehicles: Elsevier.
Maricq, M. M., Podsiadlik, D. H., & Chase, R. E. (1999). Examination of the size-resolved and transient nature of motor vehicle particle emissions. Environmental science & technology, 33(10), 1618-1626.
Matti Maricq, M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. Journal of aerosol science, 38(11), 1079-1118.
Meng, X., Ma, Y., Chen, R., Zhou, Z., Chen, B., & Kan, H. (2013). Size-fractionated particle number concentrations and daily mortality in a Chinese city. Environmental health perspectives, 121(10), 1174-1178.
Oakes, M. M., Burke, J. M., Norris, G. A., Kovalcik, K. D., Pancras, J. P., & Landis, M. S. (2016). Near-road enhancement and solubility of fine and coarse particulate matter trace elements near a major interstate in Detroit, Michigan. Atmospheric Environment, 145, 213-224.
Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives, 113(7), 823-839.
Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation toxicology, 16(6-7), 437-445.
Otiaba, K. C., Ekere, N. N., Bhatti, R. S., Mallik, S., Alam, M. O., & Amalu, E. H. (2011). Thermal interface materials for automotive electronic control unit: Trends, technology and R&D challenges. Microelectronics Reliability, 51(12), 2031-2043.
Palke, D. R., & Tyo, M. (1999). The impact of catalytic aftertreatment on particulate matter emissions from Small Motorcycles (No. 1999-01-3299). SAE Technical Paper.
Price, P., Twiney, B., Stone, R., Kar, K., & Walmsley, H. (2007). Particulate and hydrocarbon emissions from a spray guided direct injection spark ignition engine with oxygenate fuel blends (No. 2007-01-0472). SAE Technical Paper.
Raifen, C. (2013). Tyre Basics-Passenger Car Tyres, Deuchland, 2013/14.
Raza, M., Chen, L., Leach, F., & Ding, S. (2018). A review of particulate number (PN) emissions from gasoline direct injection (GDI) engines and their control techniques. Energies, 11(6), 1417.
Schauer, J. J., Lough, G. C., Shafer, M. M., Christensen, W. F., Arndt, M. F., DeMinter, J. T., & Park, J.-S. (2006). Characterization of metals emitted from motor vehicles. Research report (Health Effects Institute)(133), 1-76; discussion 77-88.
Sementa, P., Vaglieco, B. M., & Catapano, F. (2012). Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol. Fuel, 96, 204-219.
Shen, X., Yao, Z., Huo, H., He, K., Zhang, Y., Liu, H., & Ye, Y. (2014). PM2.5 emissions from light-duty gasoline vehicles in Beijing, China. Science of The Total Environment, 487, 521-527.
Smith, O. I. (1981). Fundamentals of soot formation in flames with application to diesel engine particulate emissions. Prog. Energy Combust. Sci, 7(4), 275-291.
Sternbeck, J., Sjödin, Å., & Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment, 36(30), 4735-4744.
Takagi, Y. (1996). The role of mixture formation in improving fuel economy and reducing emissions of automotive SI engines, FISITA Technical Paper, No. P0109.
Thiruvengadam, A., Besch, M. C., Yoon, S., Collins, J., Kappanna, H., Carder, D. K., . . . Gautam, M. (2014). Characterization of particulate matter emissions from a current technology natural gas engine. Environmental science & technology, 48(14), 8235-8242.
Tsai, J.-H., Chiang, H.-L., Hsu, Y.-C., Weng, H.-C., & Yang, C.-Y. (2003). The speciation of volatile organic compounds (VOCs) from motorcycle engine exhaust at different driving modes. Atmospheric Environment, 37(18), 2485-2496.
Tsai, J.-H., Yao, Y.-C., Huang, P.-H., & Chiang, H.-L. (2017). Criteria pollutants and volatile organic compounds emitted from motorcycle exhaust under various regulation phases. Aerosol Air Qual. Res, 17, 1214-1223.
USEPA. (2007a). 40 CFR Part 1065 - ENGINE-TESTING PROCEDURES.
USEPA. (2007b). 40 CFR Part 1066 - VEHICLE-TESTING PROCEDURES.
USEPA. (2019). Speciate Version 5.0.
Viana, M., Kuhlbusch, T. A., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., Prévôt, A. S. (2008). Source apportionment of particulate matter in Europe: a review of methods and results. Journal of aerosol science, 39(10), 827-849.
Vogt, R., Scheer, V., Casati, R., & Benter, T. (2003). On-road measurement of particle emission in the exhaust plume of a diesel passenger car. Environmental science & technology, 37(18), 4070-4076.
Wang, Y.-F., Huang, K.-L., Li, C.-T., Mi, H.-H., Luo, J.-H., & Tsai, P.-J. (2003). Emissions of fuel metals content from a diesel vehicle engine. Atmospheric Environment, 37(33), 4637-4643.
Wei, Q., Akard, M., Porter, S., & Nakamura, H. (2009). The Effect of Drive Cycles on PM emission characteristics from a gasoline vehicle (No. 2009-01-1119). SAE Technical Paper.
Wu, B., Shen, X., Cao, X., Yao, Z., & Wu, Y. (2016). Characterization of the chemical composition of PM2.5 emitted from on-road China III and China IV diesel trucks in Beijing, China. Science of The Total Environment, 551, 579-589.
Wu, B., Shen, X., Cao, X., Zhang, W., Wu, H., & Yao, Z. (2015). Carbonaceous composition of PM2.5 emitted from on-road China III diesel trucks in Beijing, China. Atmospheric Environment, 116, 216-224.
Yang, H.-H., Dhital, N., Wang, L.-C., Hsieh, Y.-S., Lee, K.-T., Hsu, Y.-T., & Huang, S.-C. (2019). Chemical Characterization of Fine Particulate Matter in Gasoline and Diesel Vehicle Exhaust. Aerosol and Air Quality Research, 19, 1439-1449.
Young, L.-H., Liou, Y.-J., Cheng, M.-T., Lu, J.-H., Yang, H.-H., Tsai, Y. I., Lai, J.-S. (2011). Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust. Journal of hazardous materials, 199-200, 282-289.
Zhang, Y., Yao, Z., Shen, X., Liu, H., & He, K. (2015). Chemical characterization of PM2. 5 emitted from on-road heavy-duty diesel trucks in China. Atmospheric Environment, 122, 885-891.
Zielinska, B., Sagebiel, J., McDonald, J. D., Whitney, K., & Lawson, D. R. (2004). Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. Journal of the Air & Waste Management Association, 54(9), 1138-1150.
三陽工業. (2001). ATTILA RS21 EFi 150 service manual: 三陽工業股份有限公司 服務部.
三陽工業. (2002). 高手/心情 125 修護手冊: 三陽工業股份有限公司 服務部.
工業技術研究院. (2015). 工業材料雜誌340期.
尤新來. (2003). 汽車學I:汽油引擎篇: 全華圖書.
行政院環境保護署. (2001). 都會區機車行車型態與排放係數研究. Retrieved from
行政院環境保護署. (2016). 環保署空污科研合作計畫-柴油引擎排放懸浮微粒之物理及化學特性研究. Retrieved from
行政院環境保護署. (2019). [TEDS 10.0版]線源排放量技術手冊 Retrieved from https://teds.epa.gov.tw/TEDS_10_0.aspx
行政院環境保護署環境檢驗所. (2015). 排放管道中粒狀污染物採樣及其濃度之測定方法. (NIEA A101.75C).
吳志勇. (2008). 缸內直噴引擎(GDI)技術的發展與未來. 車輛研測資訊.
吳鴻祥. (1972). 汽車原理. 大中國圖書公司印行.
周瑞福. (2010). 氣體感測器原理與應用. 三聯技術(77), 25-31.
林煜旻. (2019). 以簡易車體動力計進行機車污染定期檢測的探討. 中興大學機械工程學系所學位論文.
林鈺庭. (2014). LZ91 鎂合金透過微弧氧化製程改變表面色澤之研究. 臺灣大學材料科學與工程學研究所學位論文.
胡建軍, 秦大同, & 舒红. (2001). 金属带式无级变速传动系统速比匹配控制策略. 重庆大学学报 (自然科学版), 24(6), 12-17.
高敏聰. (2019). 燃料系統-化油器的分類、構造與工作原理. Retrieved from https://www.tyai.tyc.edu.tw/am/mtkao/new_page_13.htm
許翔璽. (2006). 四行程機車引擎排放粒狀污染物特徵之研究. 臺北科技大學環境規劃與管理研究所學位論文, 1-124.
陳志強. (2002). 汽油油品及引擎排放廢氣中金屬元素之特徵. 成功大學環境工程學系學位論文, 1-112.
陳志傑. (2014). 移動污染源細懸浮微粒(PM2.5)調查技術開發. (EPA-103-1602-02-04).
彭柏鈞. (2003). 都會區機車行車型態與空氣污染物排放特性之調查. 國立成功大學環境工程學系學位論文.
曾逸敦. (2019). 汽車學原理與實務第二版: 五南出版社.
黃松郁. (2009). 四輪傳動檢驗室. 車輛研測資訊, 26-29.
廖士勛. (2012). 台南都會區機車行車型態與氣態污染物排放特性研究. 成功大學環境工程學系學位論文, 1-190.
蔡俊鴻. (2002). 子計畫六: 大氣奈米微粒化學組成特性與氣相前驅物質關連性研究 (I). (NSC91-2621-Z006-004)
賴瑞海. (2015). 汽車學IV:柴油引擎篇: 全華圖書.
環保署. (2017a). 「執行汽油引擎汽車新車型審驗、新車抽驗、使用中汽車召回改正調查測試與相關措施研訂」專案工作計畫. (EPA-106-FA13-03-D036).
環保署. (2017b). 執行柴油引擎汽車新車型審驗、新車抽驗及使用中車輛召回改正調查測試. (EPA-106-FA13-03-D047).
環保署. (2017c). 執行機車新車型審驗、新車抽驗、使用中機車召回改正調查測試與污染排放管制措施研究. (EPA-106-FA13-03-D042).
謝煒東. (2000). 乙醇-汽油混合燃料之燃燒特性、污染分析及引擎測試. 國立成功大學機械工程學系碩士論文.
蘇皋群, 吳明潤, 莊志偉. (2012). 車速及引擎轉速對市區公車污染排放的影響與分析. 中華民國第十七屆車輛工程學術研討會.