| 研究生: |
葉承朋 Yeh, Cheng-Peng |
|---|---|
| 論文名稱: |
高爐風徑區流場與燃燒之數值模擬研究 NUMERICAL STUDY ON FLOW AND COMBUSTION IN BLAST FURNACE RACEWAY |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 高爐 、風徑區 、粉煤噴吹 、爐頂氣循環過程 、燃燒 |
| 外文關鍵詞: | Blast furnace, Raceway, Pulverized coal injection, Top gas recycling process, Combustion |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高爐於煉鐵鋼廠中是扮演著鐵水供應的重要角色。為降低煉鐵成本、增加企業的競爭力,現今高爐皆採用煤粉噴吹之技術來煉鐵以取代高價之焦炭。實務經驗表明,在高噴吹量的情況下,容易造成高爐的不穩定。為確保高爐的操作效率,研究中以數值模擬的方法來探討高爐風徑區內複雜的物理與化學現象,以瞭解造成爐況不穩定的因素。
論文的第一部分中,建立(二維)全焦燃燒數學模型來探討鼓風量與爐內條件對風徑區變化的影響;然後將該模型擴展至三維全比例(高爐)模型來預測中鋼三號高爐的風徑區結構。
論文的第二部分則建構一噴吹燃料燃燒之數學模式,以探討高爐雙輔助燃料(粉煤、爐頂氣)混合噴吹時,其不同的燃料特性對粉煤的燃燒效率與流場特性的影響。所探討參數包括噴槍型式、冷卻氣體種類與噴吹率。結果表明,高爐爐頂氣循環噴吹時,由於爐頂氣易燃的特性在鼓風嘴內立即著火燃燒,造成鼓風管–鼓風嘴內的阻力明顯增加;然而爐頂氣中的還原氣體燃燒會消耗粉煤周圍的氧氣濃度,所以粉煤的燃燒率隨著爐頂氣噴吹量的增加而明顯的降低。此外,較大槍口管徑的噴槍所導致的二次流旋渦效應明顯較小者強。
本論文的最後一部分,結合了焦炭與粉煤燃燒的數學模型,來澄清風徑區內焦炭的燃燒效應對粉煤燃燒率的影響。結果顯示,當沒有考慮焦炭燃燒時,粉煤的燃燒效率至少高估10%;尤其是在探討小粉煤粒徑與低噴吹率的高揮發煤時,焦炭的燃燒效應最為顯著。此外,結果指出煤的性質(如燃料比,膨脹係數等)對其燃燒性能有很大的影響;混合煤之燃燒效率與混合重量之比例幾成線性相依關係。
本論文之研究成果對於未來的煉鐵過程中,提供在高爐操作時對其工作效率與成本效益一個有用的調整之參考。
Blast furnaces (BFs) play a crucial role in the ironmaking industry as a means of producing hot metal. However, to ensure the competitiveness of the final steel products, the cost of the BF process must be significantly reduced. In the modern ironmaking industry, this is most commonly achieved by using pulverized coal injection (PCI) as a way of reducing the consumption of higher cost prime coking coals. However, operational experience shows that the BF may become unstable at higher injection rates. To understand the origins of this instability, and to ensure an efficient BF operation, it is necessary to clarify the complex physical and chemical phenomena which take place within the combustion region of the furnace. In practice, this is most conveniently achieved using some form of numerical model.
Accordingly, in the first part of this thesis, a two–dimensional coke combustion model is developed to investigate the dependency of the raceway dynamics on the blast volume and in–furnace conditions. The model is then extended to a three–dimensional full–scale model for predicting the combustion zone in a real–world blast furnace (BF No. 3 of China Steel Corporation in Taiwan).
The second part of the thesis develops a PCI model to investigate the flow behavior and combustion characteristics of a pulverized coal and CO2–stripped blast furnace top gas (BFG) mixture within the blowpipe–tuyere–raceway region of a BF. The simulations focus specifically on the effects of the lance configuration, the cooling gas type and the cooling gas flow rate. The results show that a significant flow–induced pressure drop occurs in the blowpipe–tuyere region of the furnace due to the gaseous combustion of the oxygen within the blast and the BFG injected via the lance. Moreover, it is shown that the burnout of the injected coal reduces significantly with an increasing BFG cooling flow rate due to the greater amount of oxygen consumed in the BFG combustion process. Finally, it is shown that a stronger swirling flow is formed when the lance configuration with bigger diameter is employed.
The final part of the thesis constructs an integrated model of the coke / coal combustion process in order to clarify the coke–burning effect on the burnout behavior of pulverized coal within the semi–void raceway region of a BF. The results show that the combustion efficiency of the injected fuel is reduced by a minimum of 10% when coke–burning occurs. The decrease in combustion efficiency is particularly apparent for high volatile fuels with a small particle size and a low injection rate. Moreover, the results show that the combustion performance of coal is highly dependent on the coal properties (e.g. the fuel ratio, the swelling coefficient, and so on). Finally, it is shown that the ratio of PCI coal blends should be set in accordance with the burnout propensities of the individual coals rather than the fuel ratio.
Overall, the numerical results presented in this thesis provide a useful insight of lower zone of BF for improving the efficiency and cost–effectiveness of the blast furnace process in the future.
Afanga K, Mirgaux O, Patisson F. Assessment of top gas recycling blast furnace: a technology to reduce CO2 emissions in the steelmaking industry. Carbon Manage. Technol. Conf., 1–9, 2012.
Andahazy D, Löffler G, Winter F, Feilmayr C, Bürgler T. Theoretical analysis on the injection of H2, CO, CH4 rich gases into the blast furnace. ISIJ Int., 45 (2): 166–74, 2005.
Andahazy D, Slaby S, Löffler G, Winter F, Feilmayr C, Bürgler T. Governing processes of gas and oil injection into the blast furnace. ISIJ Int., 46 (4): 496–502, 2006.
ANSYS Fluent 6.3.26 – User’s guide, Fluent Inc., Lebanon, NH, USA, 2006.
Aoki H, Nogami H, Tsuge H, Miura T, Furukawa T. Simulation of transport phenomena around the raceway zone in the blast furnace with and without pulverized coal injection. ISIJ Int., 33 (6): 646–54, 1993.
Ariyama T, Murai R, Ishii J, Sato M. Reduction of CO2 emission from integrated steel works and its subjects for a future study. ISIJ Int., 45 (10): 1371–8, 2005.
Ariyama T, Sato M, Yamakawa YI, Yamada Y, Suzuki M. Combustion behavior of pulverized coal in tuyere zone of blast furnace and influence of injection lance arrangement on combustibility. ISIJ Int., 34 (6): 476–83, 1994.
Australian commodities report, June quarter 2011. ISBN 978–1–921192–80–7, 18 (2): 104–12, 2011.
Baum MM, Street PJ. Predicting the combustion behavior of coal particles. Combust. Sci. Technol., 3 (5): 231–43, 1971.
Biswas AK. Principles of blast furnace ironmaking: theory and practice. Cootha Publishing House, Brisbane, 1981.
Burgess J. Fuel combustion in the blast furnace raceway zone. Prog. Energy Combust. Sci., 11 (1): 61–82, 1985.
Burgess JM, Jamaluddin AS, McCarthy MJ, Mathieson JG, Nomura M, Truelove JS, Wall F. Pulverized coal ignition and combustion in the blast furnace tuyere zone. Joint Symp. ISIJ and AIMM, Tokyo, Japan, 129–41, 1983.
Chen CW. Numerical analysis for the multi–phase flow of pulverized coal injection inside blast furnace tuyere. Appl. Math. Model., 29 (9): 871–84, 2005.
Chen WH, Wu JS. An evaluation on rice husks and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace. Energy, 34 (10): 1458–66, 2009.
Csanady GT. Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci., 20 (3): 201–8, 1963.
Davison J. Performance and costs of power plants with capture and storage of CO2. Energy, 32 (7): 1163–76, 2007.
Dong X, Yu AB, Yagi JI, Zulli P. Modelling of Multiphase flow in a blast furnace: recent developments and future work. ISIJ Int., 47 (11): 1553–70, 2007.
Dong XF, Pinson D, Zhang SJ, Yu AB, Zulli P. Gas–powder flow in blast furnace with different shapes of cohesive zone. Appl. Math. Model., 30 (11): 1293–309, 2006.
Du SW, Chen WH. Numerical prediction and practical improvement of pulverized coal combustion in blast furnace. Int. Commun. Heat Mass Transf., 33 (3): 327–34, 2006.
Du SW, Chen WH, Lucas J. Performance of pulverized coal injection in blowpipe and tuyere at various operational conditions. Energy Conv. Manag., 48 (7): 2069–76, 2007.
Du SW, Chen WH, Lucas JA. Pulverized coal burnout in blast furnace simulated by a drop tube furnace. Energy, 35 (2): 576–81, 2010.
Elghobashi SE, Abou–Arab TW. A two–equation turbulence model for two–phase flows. Phys. Fluids, 26 (4): 931–8, 1983.
Ergun S. Fluid flow through packed columns. Chem. Eng. Prog., 48 (2): 89–94, 1952.
Fan LS, Zhu C. Principles of gas–solid flows. Cambridge University Press, Cambridge, 1998.
Field MA. Rate of combustion of size–graded fractions of char from a low rank coal between 1200 K-2000 K. Combust. Flame, 13 (3): 237–52, 1969.
Flint PJ, Burgess J. A fundamental study of raceway size in two dimensions. Metall. Trans. B, 23B (3): 267–83, 1992.
Geerdes M, Toxopeus H, Van Der Vliet C. Modern Blast Furnace Ironmaking: An introduction. IOS Press, Amsterdam, 2009.
Ghosh A, Chatterjee A. Ironmaking and steelmaking: theory and practice. PHI Learning Pvt. Ltd., New Delhi, 2008.
Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic Press, New York, 1994.
Gu M, Chen G, Zhang M, Huang D, Chaubal P, Zhou CQ. Three–dimensional simulation of the pulverized coal combustion inside blast furnace tuyere. Appl. Math. Model., 34 (11): 3536–46, 2010.
Gupta S, French D, Sakurovs R, Grigore M, Sun H, Cham T, Hilding T, Hallin M, Lindblom B, Sahajwalla V. Minerals and iron–making reactions in blast furnaces. Prog. Energy Combust. Sci., 34 (2): 155–97, 2008.
Gunn DJ. Transfer of heat or mass to particles in fixed and fluidized beds. Int. J. Heat Mass Transf., 21 (4): 467–76, 1978.
Han Y, Xue Q, Li Y. Prospect analysis on new ironmaking technology of oxygen blast furnace and gas–recycle. Adv. Mater. Res., 146: 417–23, 2011.
He J, Kuwabara M, Muchi I. Analysis of combustion zone in raceway under question of pulverized coal injection. Tetsu To Hagane–J. Iron Steel Inst. Jpn., 72 (14): 1847–54, 1986.
Hutny WP, Lee GK, Price JT. Fundamentals of coal combustion during injection into a blast furnace. Prog. Energy Combust. Sci., 17 (4): 373–95, 1991.
Inatani T, Okabe K, Nishiyama T, Serizawa Y, Takahashi H, Saino M. Heavy oil combustion in blowpipe and tuyere of blast furnace. Tetsu To Hagane–J. Iron Steel Inst. Jpn., 62 (5): 514–24, 1976.
Ishii, K. Advanced pulverized coal injection technology and blast furnace operation. Pergamon Press, Oxford, 2000.
Jamaluddin AS. Combustion of pulverised coal as a tuyere–injectant to blast furnace. Ph.D thesis, University of Newcastle, Newcastle, 1985.
Jamaluddin AS, Wall TF, Truelove JS. Mathematical modeling of combustion in blast furnace raceways, including injection of pulverized coal. Ironmak. Steelmak., 13 (2): 91–9, 1986.
Kase M, Sugata M, Yamaguchi K, Nakagome M. Analysis of coke behavior in raceway using endoscope and high–speed camera. Trans. ISIJ, 22 (10): 811–9, 1982.
Kobayashi H, Howard JB, Sarofim AF. Coal devolatilization at high temperatures. Proc. Combust. Inst., 16 (1): 411–25, 1977.
Kuwabara M, Hshieh Y, Isobe K, Muchi I. Mathematical modelling of the tuyere combustion zone of the blast furnace. Aust. Inst. Min. Metall. Symp. Ser., 1–7, 1981.
Launder BE, Spalding DB. Lectures in mathematical model turbulence. Academic Press, London, 1972.
Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N. Kinetic Theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech., 140 (MAR): 223–56, 1984.
Magnussen BF, Hjertager BH. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Instit., 16: 719–29, 1976.
Maldonado D, Austin P, Zulli P, Guo BY. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications. Iron Steel Tech., 6 (3): 50–62, 2009.
Mathieson JG, Truelove JS, Rogers H. Toward an understanding of coal combustion in blast furnace tuyere injection. Fuel, 84 (10): 1229–37, 2005.
Mondal SS, Som SK, Dash SK. Numerical predictions on the influences of the air blast velocity, initial bed porosity and bed height on the shape and size of raceway zone in a blast furnace. J. Phys. D–Appl. Phys., 38 (8): 1301–7, 2005.
Morsi SA, Alexander AJ. An investigation of particle trajectories in two–phase flow system. J. Fluid Mech., 55 (2):193–208, 1972.
Murai R, Sato M, Ariyama T. Design of innovative blast furnace for minimizing CO2 emission based on optimization of solid fuel injection and top gas recycling. ISIJ Int., 44 (12): 2168–77, 2004.
Nakamura M, Sugiyama T, Uno T, Hara Y, Kondo S. Configuration of the raceway in an experimental (blast) furnace. Tetsu To Hagane–J. Iron Steel Inst. Jpn., 63: 28–44, 1977.
Nakamura N, Togino Y, Tateoka M. Behavior of coke in large blast furnaces. Ironmak. Steelmak., 5 (1): 1–17, 1978.
Nogami H, Yamaoka H, Takatani K. Raceway design for the innovative blast furnace. ISIJ Int., 44 (12): 2150–8, 2004.
Norgate T, Langberg D. Environmental and economic aspects of charcoal use in steelmaking. ISIJ Int., 49 (4): 587–95, 2009.
Nozawa K, Kamijo T, Shimizu M. A quantitative description of void distributions in blast furnace raceway. Tetsu To Hagane–J. Iron Steel Inst. Jpn., 81 (9): 14–9, 1995.
Omori Y. Blast furnace phenomena and modelling. Elsevier Applied Science, London, 1987.
Osório E, Gomes MDI, Vilela ACF, Kalkreuth W, de Almeida MAA, Borrego AG, Alvarez D. Evaluation of petrology and reactivity of coal blends for use in pulverized coal injection (PCI). Int. J. Coal Geol., 68 (1–2): 14–29, 2006.
Patankar SV. Numerical heat transfer and fluid flow. Hemisphere Press, Washington, 1980.
Perlov NI. Technological approaches to energy saving in blast–furnace operations in the iron and steel industry of the U.S.S.R. Energy, 12 (10–11): 1177–81, 1987.
Rajneesh S, Sarkar S, Gupta GS. Prediction of raceway size in blast furnace from two dimensional experimental correlations. ISIJ Int., 44 (8): 1298–1307, 2004.
Ranz WE, Marshall WR. Evaporation from drops, part I. Chem. Eng. Process., 48 (3): 141–6, 1952a.
Ranz WE, Marshall WR. Evaporation from drops, part II. Chem. Eng. Process., 48 (4): 173–80, 1952b.
Rowe PN. Drag forces in a hydraulic model of a fluidized bed: part II. Trans. Inst. Chem. Eng., 39 (3): 175–80, 1961.
Sarkar S, Gupta GS, Litster JD, Rudolph V, White ET, Choudhary SK. A cold model study of raceway hysteresis. Metall. Mater. Trans. B–Proc. Metall. Mater. Proc. Sci., 34 (2): 183–91, 2003.
Sastry GSSRK, Gupta GS, Lahiri AK. Void formation and breaking in a packed bed. ISIJ Int., 43 (2): 153–60, 2003a.
Sastry GSSRK, Gupta GS, Lahiri AK. Cold model study of raceway under mixed particle conditions. Ironmak. Steelmak., 30 (1): 61–5, 2003b.
Shen FM, Ding ZM, Yang WG, Jiang X, Mu L, Shen YS. An industrial investigation of Bi-PCI process in a blast furnace. J. Iron Steel Res. Int., 16: 753–7, 2009.
Shen YS, Guo BY, Yu AB, Austin PR, Zulli P. Three–dimensional modeling of in–furnace coal/coke combustion in a blast furnace. Fuel, 90 (2): 728–38, 2011a.
Shen YS, Guo BY, Yu AB, Maldonado D, Austin P, Zulli P. Three–dimensional modeling of coal combustion in blast furnace. ISIJ Int., 48 (6): 777–86, 2008.
Shen YS, Guo BY, Yu AB, Zulli P. Model study of the effects of coal properties and blast conditions on pulverized coal combustion. ISIJ Int., 49 (6): 819–26, 2009a.
Shen YS, Guo BY, Yu AB, Zulli P. A three–dimensional numerical study of the combustion of coal blends in blast furnace. Fuel, 88 (2): 255–63, 2009b.
Shen YS, Maldonado D, Guo BY, Yu AB, Austin P, Zulli P. Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway. Ind. Eng. Chem. Res., 48 (23): 10314–23, 2009c.
Shen YS, Yu AB, Austin PR, Zulli P. Modelling in–furnace phenomena of pulverized coal injection in ironmaking blast furnace: effect of coke bed porosities. Miner. Eng., 33: 54–65, 2012a.
Shen YS, Yu AB, Austin PR, Zulli P. CFD study of in–furnace phenomena of pulverised coal injection in blast furnace: effects of operating conditions. Powder Technol., 223 (SI): 27–38, 2012b.
Shen YS, Yu AB, Zulli P. CFD modelling and analysis of pulverized coal injection in blast furnace: an overview. Steel Res. Int., 82 (5): 532–42, 2011b.
Shi Y, Zhang L, Zheng F. Numerical investigation of pulverized coal injection behavior in a blast furnace. Int. Conf. Mater. Renew. Energy Environ., 2: 1684–88, 2011.
Simonin C, Viollet PL. Predictions of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow. Numer. Meth. Multiph. Flows, 91: 73–82, 1990.
Smith PJ, Smoot LD. One–dimensional model for pulverized coal combustion and gasification. Combust. Sci. Technol., 23 (1–2): 17–31, 1980.
Smoot LD, Smith PJ. Coal combustion and gasification. Plenum Press, New York, 1985.
Takeda K, Lockwood FC. Integrated mathematical model of pulverized coal combustion in a blast furnace. ISIJ Int., 37 (5): 432–40, 1997.
Ubhayakar K, Stickler DB, Rosenberg CWV, Ganon R. Rapid devolatilization of pulverized coal in hot combustion gases. Symp. Int. Combust. Proc., 16 (1): 427–36, 1977.
Udea S, Natsui S, Nogami H, Yagi JI, Ariyama T. Recent progress and future perspective on mathematical modeling of blast furnace. ISIJ Int., 50 (7): 914–23, 2010.
Umekage T, Kadowaki M, Yuu S. Numerical simulation of effect of tuyere angle and wall scaffolding on unsteady gas and particle flows including raceway in blast furnace. ISIJ Int., 47 (5): 659–68, 2007.
Vasquez SA, Ivanov VA. A phase coupled method for solving multiphase problems on unstructured meshes. ASME Fluids Eng. Div. Summer Meeting, Boston, Massachusetts, June 11–15, 2000.
Wen CY, Yu YH. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser., 62: 100–11, 1966.
Xu BH, Yu AB, Chew SJ, Zulli P. Numerical simulation of the gas–solid flow in a bed with lateral gas blasting. Powder Technol., 109 (1–3): 13–26, 2000.
Yamaoka H, Nakano K. Mechanism of the degradation of coke size in raceway. Tetsu To Hagane–J. Iron Steel Inst. Jpn., 86 (11): 25–32, 2000.
Yuu S, Umekage T, Miyahara T. Predicition of stable and unstable flows in blast furnace raceway using numerical simulation methods for gas and particles. ISIJ Int., 45 (10): 1406–15, 2005.
Zhang H, Li HQ, Tang Q, Bao WJ. Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace. Sci. China Technol. Sc., 53 (1): 85–92, 2010.
Zhou CQ. CFD modeling for high rate pulverized coal injection (PCI) to blast furnaces: final report. AISI/DOE Technology Roadmap Program, No. DE–FC36–97ID13554, 2008.
Ziebik A, Stanek W. Forecasting of the energy effects of injecting plastic wastes into the blast furnace in comparison with other auxiliary fuels. Energy, 26 (12): 1159–73, 2001.