簡易檢索 / 詳目顯示

研究生: 蔡家弘
Tsai, Chia-Hung
論文名稱: 二硫化銅銦薄膜之製程評估
Process Assessment of CuInS2 Thin Films
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 174
中文關鍵詞: 二硫化銅銦硫化太陽能電池
外文關鍵詞: CuInS2, sulfurization, solar cell
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於二硫化銅銦(CuInS2) 之太陽能吸收層薄膜成長與特性分析,並開發其硫化製程包含in-situ及ex-situ硫化製程。成長CuInS2薄膜有多種製備方式,最常見的為兩階段製程(two-step process),第一步先製備銅銦薄膜前驅物,接著於第二步再將試片移至反應爐管以硫粉或硫化氫氣體作為硫源進行硫化反應(ex-situ硫化),為了縮短製程時間與不破真空保持試片之潔淨度,本研究在熱蒸鍍製備銅銦薄膜前驅物後,後續直接將H2S/Ar混合氣體通入真空腔體中進行in-situ硫化反應之製程開發,在in-situ硫化過程中,主要影響CuInS2薄膜之實驗參數包含銅銦薄膜前驅物之交替層結構、硫化溫度與硫化壓力。最後於7.5 torr下,銅銦前驅物於450~550℃之間可完全硫化而轉變至CuInS2薄膜,其具有大於104 cm-1之吸收係數、大於90%吸收度以及10-1 Ω-cm尺度之電阻率之薄膜特性。在開發in-situ硫化製程後,接著研究CuInS2薄膜於硫化成長過程中之微結構與相轉變,本研究採用三種銅銦前驅物結構與兩種升溫曲線,於硫化過程中不同溫度與持溫時間下停止硫化,將試片移出並分析探討各種前驅物於硫化過程中之變化,結果發現無論銅銦前驅物結構為何,在不同升溫曲線下硫化時,CuInS2薄膜皆於310℃開始成長,此時GIXRD沒有偵測到介穩定相CuInS2-CA與CuIn5S8,但是Raman結果卻明顯指出CuInS2-CH、CuInS2-CA與CuIn5S8之共存,隨著硫化溫度上升至500℃時,後兩相明顯變少許多並隨著持溫時間而減少,同時由CuInS2-CH A1特徵峰藍移(blue shift)減少與半高寬值(FWHM)下降可得知薄膜品質變佳,然而,即使經過整個硫化升溫曲線後,Raman結果指出仍有少量的CuInS2-CA與CuIn5S8存在於CuInS2薄膜中。過去文獻中以XRD結果指出CuInS2薄膜是由Cu11In9或Cu16In9合金相成長所得,但本研究之TEM直接證據顯示,無論在310℃或500℃之硫化溫度下,CuInS2薄膜皆由Cu11In9合金相而非Cu16In9合金相成長所得。結合不同銅銦前驅物結構於不同升溫曲線硫化過程之GIXRD、Raman與TEM分析結果,本研究進一步提出了CuInS2薄膜之成長路徑與反應順序。
    除了in-situ硫化,本研究亦同時發展ex-situ硫化製程,過程中,先比較穩定(密閉式)與流通(開放式)的H2S/Ar混和氣體環境中硫化所得CuInS2薄膜,由試片外觀與SEM結果,密閉式硫化效果較好。後續於密閉式硫化製程以硫化溫度與銅銦前驅物之Cu/In比做為實驗參數,其中特別探討Cu/In比對於硫化所得CuInS2薄膜特性(晶粒尺寸、表面形貌、表面粗糙度、微結構以及缺陷)之關聯,結果顯示高Cu/In比之前驅物硫化後所得CuInS2薄膜晶粒較大、表面較平坦、孔洞較少、介穩定相(CuInS2-CA與CuIn5S8)較少、CuS二次相較多與缺陷(1.45 eV)較少,因此薄膜品質也較佳,但CuS同時也形成於CIS/Mo介面使得附著性變差導致薄膜剝落。而硫化溫度的提升,也會降低介穩定相(CuInS2-CA與CuIn5S8),同時CuInS2-CH A1特徵峰藍移與半高寬皆減小,表示薄膜品質提升,然而,隨溫度上升而增加之MoS2厚度在550℃下最厚並影響薄膜附著性,綜合上述結果,所得最佳效率之CuInS2薄膜太陽能電池是500℃硫化Cu/In為1.8之前驅物所得CuInS2薄膜,其效率為6.29%。

    The objective in this research was the growth and characteristic of the CuInS2 solar absorption layer and the development of sulfurization process including in-situ and ex-situ sulfurization processes. There were numbers of metods to grow CuInS2 thin films. The most common seen method is two-step process in which the precursor is prepared first and then removed into a reactive furnace for further sulfurization process using sulfur powder or H2S gas as sulfur source. In order to reduce the process time and keep the sample clean without breaking the vacuum, the in-situ sulfurization process was developed by thermally evaporated precursor followed by directly introducing H2S/Ar mixture gas into the vacuum chamber in this research. During the sulfurization process, the main parameters which affected the resulting CuInS2 thin films were layered structure of precursors, sulfurization temperature and sulfurization pressure. The precursor could be completely convered into CuInS2 thin films at sulfurization temperature between 450~550℃ under 7.5 torr. The resulting CuInS2 thin films exhibited absorption coefficient higher than 104 cm-1, absorbance higher than 90% and resistivity of ~ 10-1 Ω-cm. After the development of in-situ sulfurization process, the microstructure and phase transformation of CuInS2 thin films during the sulfurization process were then investigated. Three kinds of precursor structures and two kinds of thermal processes were adopted in this research. The surization was broke off at different sulfurization temperatures and prolonged time. Then the sulfurized films were removed for further analyses and the variation of different sulfurized precursors would be discussed. The results showed that CuInS2 thin films started to grow at 310℃ in any kind of precursor and thermal process. In the meantime, Raman analysis revealed the coexistence of CuInS2-CH with the metastable phases of CuInS2-CA and CuIn5S8 which were not detected in GIXRD spectra. As sulfurization temperature increased to 500℃ and prolonged at 500℃, CuInS2-CA and CuIn5S8 significantly decreased, while the decrease of blue shift and FWHM of CuInS2-CH A1 mode indicated a better quality of CuInS2 thin films. Even after the sulfurization process, extremely small amount of CuInS2-CA and CuIn5S8 were still residual in the films. It has been reported that CuInS2 would grow from Cu11In9 or Cu16In9 phase using XRD analysis. However, the TEM results gave direct evidence that CuInS2 grew from Cu11In9 phase at temperature of 310 and 500℃. With the combination of GIXRD, Raman and TEM analyses of different precursor structures sulfurized by different thermal processes, the growth path and reaction sequence of CuInS2 thin films were proposed in this study.
    In addition to in-situ sulfurization process, the ex-situ sulfurization process was also developed. CuInS2 films sulfurized under the steady (close system) and flowing (open system) H2S/Ar mixture gas environment were compared. The former resulted in better and uniform morphology of sulfurized films and was used in the following for sulfurization process. The sulfurization temperature and Cu/In atomic ratio were used as the parameters in the close system. The relationship between Cu/In ratio and the characteristics (grain size, surface morphology, roughness, microstructure and defects) of CuInS2 films were spectially discussed. The results showed that CuInS2 films with higher Cu/In ratio exhibited larger grain size, platter surface, less pin holes, less metastable phases of CuInS2-CA and CuIn5S8, more CuS secondary phase and lower defects (1.45 eV). As the results, film quality was also better. But formation of CuS in the CIS/Mo interface would result in bad adhesion and lead to peel-off. The increase of sulfurization temperature also reduced the metastable phases of CuInS2-CA and CuIn5S8, while the blue shift and FWHM of CuInS2-CH A1 mode also decreased. As the results, the films quality increased. However, the thickness of MoS2 increased with sulfurization temperature was the thickest at 550℃ would affect the film adhesion. As the results, the best efficiency of CuInS2 solar cells obtained from 500℃ sulfurized films having a Cu/In atomic ratio of 1.8 was 6.29%.

    摘 要 I Abstract IV 致 謝 VII 目 錄 VIII 表目錄 XIII 圖目錄 XIII 第一章 緒論 1 1-1前言 1 1-2太陽能電池種類與發展現況 2 1-2-1晶圓型(Wafer-Based)太陽電池 3 1-2-2薄膜型(Thin-Film)太陽電池 4 第二章 文獻回顧 6 2-1 I-III-VI2族薄膜太陽能電池結構與發展 6 2-1-1基板(Substrate) 9 2-1-2背電極(Back Contact Layer) 9 2-1-3吸收層(Absorption Layer) 11 2-1-4緩衝層(Buffer Layer) 13 2-1-5窗層(Window Layer) 15 2-2 CuInS2太陽能電池工作原理 16 2-3 CuInS2材料特性 22 2-3-1 CuInS2穩定相與介穩定相之晶體結構 22 2-3-2 CuInS2之相圖與化學組成 24 2-3-3 Cu/In原子比對CuInS2薄膜缺陷與電性之影響 27 2-4 CuInS2薄膜製程與元件效率之發展 30 2-5 CuInS2成長路徑 36 2-6研究動機與目的 46 第三章 實驗 48 3-1實驗流程 48 3-2熱電阻式熱蒸鍍與硫化系統 51 3-2-1熱電阻蒸鍍原理 51 3-2-2熱電阻蒸鍍與硫化系統(in-situ硫化) 52 3-2-3水平爐管硫化系統(ex-situ硫化) 53 3-3實驗材料 55 3-3-1基板 55 3-3-2基板清洗 55 3-3-3材料與氣體 56 3-4銅銦薄膜前驅物之製備 57 3-5硫化反應熱處理之升溫曲線 59 3-6 CuInS2薄膜特性分析 61 3-6-1薄膜結晶結構分析 61 3-6-2薄膜表面與橫截面形貌觀察 63 3-6-3薄膜微結構分析 63 3-6-4微區拉曼光譜分析 64 3-6-5薄膜電性分析 64 3-6-6薄膜光學分析 64 3-6-7薄膜表面粗糙度分析 65 3-6-8光激發螢光頻譜缺陷分析(PL) 65 第四章 結果與討論 66 4-1真空腔體中in-situ硫化銅銦薄膜前驅物 66 4-1-1銅銦薄膜前驅物之製備 66 4-1-2 in-situ硫化銅銦薄膜前驅物於真空腔體中 70 4-1-3結語 89 4-2 CuInS2薄膜於in-situ硫化過程之微結構分析與成長路徑 91 4-2-1銅銦薄膜前驅物之製備與升溫曲線 91 4-2-2 GIXRD分析 93 4-2-3 SEM分析 100 4-2-4 Raman分析 102 4-2-5 TEM分析 111 4-2-6成長路徑 125 4-2-7結語 130 4-3硫化條件與Cu/In比對CuInS2薄膜吸收層與其太陽電池表現之影響 132 4-3-1開放式與密閉式硫化硫化系統 132 4-3-2開放式與密閉式硫化系統所得CIS薄膜之比較 133 4-3-3密閉式系統硫化所得CIS薄膜之特性分析 136 4-3-4結語 155 第五章 結論 156 未來工作 160 參考文獻 161

    [1] H. Hahn, G. Frank, W. Klingler, A.-D. Meyer, G. Störger, Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur, Zeitschrift für anorganische und allgemeine Chemie, 271 (1953) 153-170.
    [2] S. Wagner, J.L. Shay, P. Migliorato, H.M. Kasper, CuInSe2/CdS heterojunction photovoltaic detectors, Applied Physics Letters, 25 (1974) 434-435.
    [3] L.L. Kazmerski, F.R. White, G.K. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells, Applied Physics Letters, 29 (1976) 268-270.
    [4] L.L. Kazmerski, G.A. Sanborn, CuInS2 thin-film homojunction solar cells, Journal of Applied Physics, 48 (1977) 3178-3180.
    [5] R.A. Mickelsen, W.S. Chen, Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell, Conference Record of 15th IEEE Photovoltaic Specialists Conference, (1981) 800-804.
    [6] R.A. Mickelsen, W.S. Chen, Polycrystalline thin-film CuInSe2 solar cells, in, 1982, pp. 781-785.
    [7] W.S. Chen, J.M. Stewart, B.J. Stanbery, W.E. Devaney, R.A. Mickelsen, Development of Thin Film Polycrystalline CuIn1-x Gax Se2 Solar Cells, Conference Record of 19th IEEE Photovoltaic Specialists Conference, (1987) 1448-1447.
    [8] T. Walter, A. Content, K.O. Velthaus, H.W. Schock, Solar cells based on CuIn(Se, S)2, Solar Energy Materials and Solar Cells, 26 (1992) 357-368.
    [9] J.E. Jaffe, A. Zunger, Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors, Phys Rev B, 29 (1984) 1882.
    [10] I. Konovalov, Material requirements for CIS solar cells, Thin Solid Films, 451-452 (2004) 413-419.
    [11] K. Granath, M. Bodegård, L. Stolt, The effect of NaF on Cu(In, Ga)Se2 thin film solar cells, Solar Energy Materials and Solar Cells, 60 (2000) 279-293.
    [12] A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Bätzner, F.J. Haug, M. Kälin, D. Rudmann, A.N. Tiwari, Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells, Progress in Photovoltaics: Research and Applications, 12 (2004) 93-111.
    [13] K. Otte, L. Makhova, A. Braun, I. Konovalov, Flexible Cu(In,Ga)Se-2 thin-film solar cells for space application, Thin Solid Films, 511 (2006) 613-622.
    [14] F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Solar Energy, 77 (2004) 685-695.
    [15] J.H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, Thin Solid Films, 260 (1995) 26-31.
    [16] L. Assmann, J.C. Bernede, A. Drici, C. Amory, E. Halgand, M. Morsli, Study of the Mo thin films and Mo/CIGS interface properties, Applied Surface Science, 246 (2005) 159-166.
    [17] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau, A.N. Tiwari, M. Dobeli, Formation and characterisation of MoSe2 for Cu(In,Ga)Se-2 based solar cells, Thin Solid Films, 480 (2005) 433-438.
    [18] W.-J. Tsai, C.-H. Tsai, C.-H. Chang, J.-M. Ting, R.-R. Wang, Addition of Na into CuInS2 thin film via co-evaporation, Thin Solid Films, 519 (2010) 1712-1716.
    [19] K.K. Banger, J.A. Hollingsworth, J.D. Harris, J. Cowen, W.E. Buhro, A.F. Hepp, Ternary single-source precursors for polycrystalline thin-film solar cells, Applied Organometallic Chemistry, 16 (2002) 617-627.
    [20] Y. Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications, Springer, 2004.
    [21] H.W. Schock, Solar cells based on CuInSe2 and related compounds: recent progress in Europe in, Elsevier Science Bv, 1994, pp. 19-26.
    [22] J.M. Meese, J.C. Manthuruthil, D.R. Locker, CuInS2 diodes for solar-energy conversion, Bulletin of the American Physical Society, 20 (1975) 696-697.
    [23] W. Eisele, A. Ennaoui, P. Schubert-Bischoff, M. Giersig, C. Pettenkofer, J. Krauser, M. Lux-Steiner, T. Riedle, N. Esser, S. Zweigart, F. Karg, New cadmium-free buffer layers as heterojunction partners on Cu(In,Ga)(S,Se)2 thin film solar cells, in: Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, pp. 692-695.
    [24] G. Gordillo, G. Cediel, L.M. Caicedo, H. Infante, J. Sandino, Study of optical, structural and morphological properties on Cd-free buffer materials, in: Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, pp. 614-617.
    [25] D. Hariskos, S. Spiering, M. Powalla, Buffer layers in Cu(In,Ga)Se2 solar cells and modules, Thin Solid Films, 480-481 (2005) 99-109.
    [26] J. Kessler, M. Ruckh, D. Hariskos, U. Ruhle, R. Menner, H.W. Schock, Interface engineering between CuInSe2 and ZnO in: Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, 1993, pp. 447-452.
    [27] L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K.O. Velthaus, H.W. Schock, ZnO/CdS/CuInSe2 thin-film solar cells with improved performance, Applied Physics Letters, 62 (1993) 597-599.
    [28] T.M. Friedlmeier, D. Braunger, D. Hariskos, M. Kaiser, H.N. Wanka, H.W. Schock, Nucleation and growth of the CdS buffer layer on Cu(In,Ga)Se2 thin films, in: Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE, 1996, pp. 845-848.
    [29] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37), Progress in Photovoltaics: Research and Applications, 19 (2011) 84-92.
    [30] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Progress in Photovoltaics: Research and Applications, (2011).
    [31] M.A. Contreras, T. Nakada, M. Hongo, A.O. Pudov, J.R. Sites, ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo solar cell with 18.6% efficiency, in: Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on, 2003, pp. 570-573 Vol.571.
    [32] J.C. Lee, K.H. Kang, S.K. Kim, K.H. Yoon, I.J. Park, J. Song, RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se-2-based solar cell applications, Solar Energy Materials and Solar Cells, 64 (2000) 185-195.
    [33] X.B. Xu, S.M. Huang, Y.W. Chen, Z. Sun, S.Y. Huang, High-quality intrinsic ZnO film for the application of solar cell grown by ICP-assisted reactive DC magnetron sputtering at low temperature, Surface Review and Letters, 14 (2007) 1083-1087.
    [34] T. Yamaguchi, T. Tanaka, A. Yoshida, Effect of substrate position in i-ZnO thin-film formation to Cu(In,Ga)Se-2 solar cell, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 20 (2002) 1755-1758.
    [35] M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Progress toward 20% efficiency in Cu(In,Ca)Se-2 polycrystalline thin-film solar cells, Progress in Photovoltaics, 7 (1999) 311-316.
    [36] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells, Progress in Photovoltaics, 11 (2003) 225-230.
    [37] W.J. Jeong, S.K. Kim, G.C. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films, 506 (2006) 180-183.
    [38] M. Marudachalam, H. Hichri, R. Klenk, R.W. Birkmire, W.N. Shafarman, J.M. Schultz, Preparation of homogeneous Cu(InGa)Se-2 films by selenization of metal precursors in H2Se atmosphere, Applied Physics Letters, 67 (1995) 3978-3980.
    [39] N.F. Cooray, K. Kushiya, A. Fujimaki, I. Sugiyama, T. Miura, D. Okumura, M. Sato, M. Ooshita, O. Yamase, Large area ZnO films optimized for graded band-gap Cu(InGa)Se-2-based thin-film mini-modules, Solar Energy Materials and Solar Cells, 49 (1997) 291-297.
    [40] C. Guillen, J. Herrero, M.T. Gutierrez, F. Briones, Structure, morphology and optical properties of CuInS2 thin films prepared by modulated flux deposition, Thin Solid Films, 480 (2005) 19-23.
    [41] D.S. Su, S.-H. Wei, Transmission electron microscopy investigation and first-principles calculation of the phase stability in epitaxial CuInS2 and CuGaSe2 films, Applied Physics Letters, 74 (1999) 2483-2485.
    [42] J. Alvarez-Garcia, J. Marcos-Ruzafa, A. Perez-Rodriguez, A. Romano-Rodriguez, J.R. Morante, R. Scheer, MicroRaman scattering from polycrystalline CuInS2 films: structural analysis, Thin Solid Films, 361 (2000) 208-212.
    [43] S.H. Wei, S.B. Zhang, A. Zunger, Band structure and stability of zinc-blende-based semiconductor polytypes, Phys Rev B, 59 (1999) R2478-R2481.
    [44] J. Alvarez-García, E. Rudigier, N. Rega, B. Barcones, R. Scheer, A. Pérez-Rodríguez, A. Romano-Rodríguez, J.R. Morante, Growth process monitoring and crystalline quality assessment of CuInS(Se)2 based solar cells by Raman spectroscopy, Thin Solid Films, 431-432 (2003) 122-125.
    [45] E. Rudigier, J. Alvarez-Garcia, I. Luck, J. Klaer, R. Scheer, Quality assessment of chalcopyrite thin films using Raman spectroscopy, Journal of Physics and Chemistry of Solids, 64 (2003) 1977-1981.
    [46] E. Rudigier, I. Luck, R. Scheer, Quality assessment of CuInS2-based solar cells by Raman scattering, Applied Physics Letters, 82 (2003) 4370-4372.
    [47] H. Metzner, M. Brussler, K.D. Husemann, H.J. Lewerenz, Characterization of phases and determination of phase-relations in the Cu-In-S system by gamma-gamma perturbed angular-correlations, Phys Rev B, 44 (1991) 11614-11623.
    [48] C. Dzionk, M. Brussler, H. Metzner, Development of CuInS2 solar-cell material by PAC-buck phases, thin films, and nuclear-reaction doping, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 63 (1992) 231-235.
    [49] J.J.M. Binsma, L.J. Giling, J. Bloem, Phase relations in the system Cu2S-In2S3, Journal of Crystal Growth, 50 (1980) 429-436.
    [50] S.C. Abrahams, Bernstei.Jl, Piezoelectric nonlinear optic CuGaS2 and CuInS2 crystal structure: Sublattice distortion in AIBIIIC2VI and AIBIIIC2VI type chalcopyrites, J Chem Phys, 59 (1973) 5415-5422.
    [51] H.J. Lewerenz, Development of copperindiumdisulfide into a solar material, Solar Energy Materials and Solar Cells, 83 (2004) 395-407.
    [52] G.C. Park, H.D. Chung, C.D. Kim, H.R. Park, W.J. Jeong, J.U. Kim, H.B. Gu, K.S. Lee, Photovoltaic characteristics of CuInS2/CdS solar cell by electron beam evaporation, Solar Energy Materials and Solar Cells, 49 (1997) 365-374.
    [53] R. Klenk, T. Walter, D. Schmid, H.W. Schock, Growth mechanisms and diffusion multinary and multilayer chalcopyrite thin-films, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 32 (1993) 57-61.
    [54] R. Scheer, H.J. Lewerenz, Photoemission study of evaporated CuInS2 thin films. I. Surface stoichiometry and phase segregation, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 12 (1994) 51-55.
    [55] K. Topper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, D. Braunig, Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments, Applied Physics Letters, 71 (1997) 482-484.
    [56] J. Klaer, J. Bruns, R. Henninger, K. Seimer, R. Klenk, K. Ellmer, D. Braunig, Efficient CuInS2 thin-film solar cells prepared by a sequential process, Semiconductor Science and Technology, 13 (1998) 1456-1458.
    [57] H.J. Lewerenz, H. Goslowsky, K.D. Husemann, S. Fiechter, Efficient Solar-Energy Conversion with CuInS2, Nature, 321 (1986) 687-688.
    [58] K.W. Mitchell, G.A. Pollock, A.V. Mason, 7.3% efficient CuInS2 solar cell, Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE 2(1988) 1542 - 1544
    [59] R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, CuInS2 based thin film solar cell with 10.2% efficiency, Applied Physics Letters, 63 (1993) 3294-3296.
    [60] Y. Ogawa, A. Jagerwaldau, Y. Hashimoto, K. Ito, In2O3/CdS/CuInS2 thin-film solar-cell with 9.7% efficiency, Japanese Journal of Applied Physics Part 2-Letters, 33 (1994) L1775-L1777.
    [61] D. Braunger, T. Durr, D. Hariskos, C. Koble, T. Walter, N. Wieser, H.W. Schock, Improved open circuit voltage in CuInS2-based solar cells, Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE (1996) 1001 - 1004
    [62] R. Klenk, U. Blieske, V. Dieterle, K. Ellmer, S. Fiechter, I. Hengel, A. JagerWaldau, T. Kampschulte, C. Kaufmann, J. Klaer, M.C. LuxSteiner, D. Braunger, D. Hariskos, M. Ruckh, H.W. Schock, Properties of CuInS2 thin films grown by a two-step process without H2S, Solar Energy Materials and Solar Cells, 49 (1997) 349-356.
    [63] T. Nakabayashi, T. Miyazawa, Y. Hashimoto, K. Ito, Over 10% efficient CuInS2 solar cell by sulfurization, Solar Energy Materials and Solar Cells, 49 (1997) 375-381.
    [64] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. Braunig, Efficient CuInS2 solar cells from a rapid thermal process (RTP), Solar Energy Materials and Solar Cells, 67 (2001) 159-166.
    [65] M. Winkler, J. Griesche, O. Tober, J. Penndorf, E. Blechschmied, K. Szulzewsky, CISCuT absorber layers - the present model of thin film growth, Thin Solid Films, 387 (2001) 86-88.
    [66] J. Klaer, K. Siemer, I. Luck, D. Braunig, 9.2% efficient CuInS2 mini-module, Thin Solid Films, 387 (2001) 169-171.
    [67] J. Klaer, I. Luck, A. Boden, R. Klenk, I.G. Perez, R. Scheer, Mini-modules from a CuInS2 baseline process, Thin Solid Films, 431-432 (2003) 534-537.
    [68] N. Meyer, A. Meeder, D. Schmid, Pilot production of large-area CuInS2-based solar modules, Thin Solid Films, 515 (2007) 5979-5984.
    [69] H. Okamoto, Comment on Cu-In (Copper-Indium), Journal of Phase Equilibria, 15 (1994) 226-227.
    [70] A. Antony, A.S. Asha, R. Yoosuf, R. Manoj, M.K. Jayaraj, Growth of CuInS2 thin films by sulphurisation of Cu-In alloys, Solar Energy Materials and Solar Cells, 81 (2004) 407-417.
    [71] C. Dzionk, H. Metzner, S. Hessler, H.E. Mahnke, Phase formation during the reactive annealing of Cu-In films in H2S atmosphere, Thin Solid Films, 299 (1997) 38-44.
    [72] A. Joswig, M. Gossla, H. Metzner, U. Reislohner, T. Hahn, W. Witthuhn, Sulphurization of single-phase Cu11In9 precursors for CuInS2 solar cells, Thin Solid Films, 515 (2007) 5921-5924.
    [73] C. von Klopmann, J. Djordjevic, E. Rudigier, R. Scheer, Real-time studies of phase transformations in Cu-In-Se-S thin films 2. Sulfurization of Cu-In precursors, Journal of Crystal Growth, 289 (2006) 121-133.
    [74] R. Mainz, R. Klenk, M.C. Lux-Steiner, Sulphurisation of gallium-containing thin-film precursors analysed in-situ, Thin Solid Films, 515 (2007) 5934-5937.
    [75] H. Rodriguez-Alvarez, I.M. Koetschau, C. Genzel, H.W. Schock, Growth paths for the sulfurization of Cu-rich Cu/In thin films, Thin Solid Films, 517 (2009) 2140-2144.
    [76] S. Jost, R. Schurr, A. Hölzing, F. Hergert, R. Hock, M. Purwins, J. Palm, The formation of the thin-film solar cell absorber CuInS2 by annealing of Cu-In-S stacked elemental layer precursors -- A comparison of selenisation and sulfurisation, Thin Solid Films, 517 (2009) 2136-2139.
    [77] M. Ortega-López, A. Morales-Acevedo, Characterization of CuInS2 thin films for solar cells prepared by spray pyrolysis, Thin Solid Films, 330 (1998) 96-101.
    [78] R. Cayzac, F. Boulc'h, M. Bendahan, M. Pasquinelli, P. Knauth, Preparation and optical absorption of electrodeposited or sputtered, dense or porous nanocrystalline CuInS2 thin films, Comptes Rendus Chimie, 11 (2008) 1016-1022.
    [79] R. Roy, S.K. Sen, S. Sen, The formation of intermetallics in Cu/In thin films, Journal of Materials Research, 7 (1992) 1377-1386.
    [80] N. Orbey, R. Birkmire, T. Russell, G. Jones, Copper-Indium Alloy Transformations, Journal of Phase Equilibria, 21 (2000) 509-513.
    [81] A. Werner, I. Luck, J. Bruns, J. Klaer, K. Siemer, D. Bräunig, Investigation of the influence of silver on the crystal growth of CuInS2 thin films, Thin Solid Films, 361-362 (2000) 88-92.
    [82] T. Hahn, J. Cieslak, H. Metzner, J. Eberhardt, U. Reislohner, M. Gossla, W. Witthuhn, J. Krausslich, Metastability of CuInS2 and its implications on thin-film growth, Applied Physics Letters, 88 (2006) 171915.
    [83] B. Barcones, A. Pérez-Rodríguez, L. Calvo-Barrio, A. Romano-Rodríguez, J.R. Morante, E. Rudigier, I. Luck, J. Djordjevic, R. Scheer, In situ and ex situ characterisation of thermally induced crystallisation of CuInS2 thin films for solar cell, Thin Solid Films, 480-481 (2005) 362-366.
    [84] J. Alvarez-Garcia, A. Perez-Rodriguez, B. Barcones, A. Romano-Rodriguez, J.R. Morante, A. Janotti, S.-H. Wei, R. Scheer, Polymorphism in CuInS2 epilayers: Origin of additional Raman modes, Applied Physics Letters, 80 (2002) 562-564.
    [85] W.H. Koschel, M. Bettini, Zone-centered phonons in AIBIIIS2 chalcopyrites, Phys. Status Solidi B-Basic Res., 72 (1975) 729-737.
    [86] N.M. Gasanly, S.A. Elhamid, L.G. Gasanova, A.Z. Magomedov, Vibrational spectra of spinel-type compound CuIn5S8, Phys. Status Solidi B-Basic Res., 169 (1992) K115-K118.
    [87] E. Rudigier, B. Barcones, I. Luck, T. Jawhari-Colin, A. Perez-Rodriguez, R. Scheer, Quasi real-time Raman studies on the growth of Cu-In-S thin films, Journal of Applied Physics, 95 (2004) 5153-5158.
    [88] B. MincevaSukarova, M. Najdoski, I. Grozdanov, C.J. Chunnilall, Raman spectra of thin solid films of some metal sulfides, in, Elsevier Science Bv, 1997, pp. 267-270.
    [89] E. Rudigier, C. Pietzker, M. Wimbor, I. Luck, J. Klaer, R. Scheer, B. Barcones, T. Jawhari Colin, J. Alvarez-Garcia, A. Perez-Rodriguez, A. Romano-Rodriguez, Real-time investigations of the influence of sodium on the properties of Cu-poor prepared CuInS2 thin films, Thin Solid Films, 431-432 (2003) 110-115.
    [90] D. Abou-Ras, C.T. Koch, V. Küstner, P.A. van Aken, U. Jahn, M.A. Contreras, R. Caballero, C.A. Kaufmann, R. Scheer, T. Unold, H.W. Schock, Grain-boundary types in chalcopyrite-type thin films and their correlations with film texture and electrical properties, Thin Solid Films, 517 (2009) 2545-2549.
    [91] D. Abou-Ras, K. Pantleon, The impact of twinning on the local texture of chalcopyrite-type thin films, physica status solidi (RRL) - Rapid Research Letters, 1 (2007) 187-189.
    [92] A. Iribarren, R. Castro-Rodriguez, F. Caballero-Briones, J.L. Pena, Optical and structural evidence of the grain-boundary influence on the disorder of polycrystalline CdTe films, Applied Physics Letters, 74 (1999) 2957-2959.
    [93] R. Castro-RodrIguez, V. Sosa, A.I. Oliva, A. Iribarren, J.L. Peña, F. Caballero-Briones, Strain gradients in polycrystalline CdS thin films, Thin Solid Films, 373 (2000) 6-9.
    [94] R. Klenk, T. Walter, H.W. Schock, D. Cahen, A Model for the Successful Growth of Polycrystalline Films of CuInSe2 by Multisource Physical Vacuum Evaporation, Advanced Materials, 5 (1993) 114-119.
    [95] R. Scheer, I. Luck, H. Sehnert, H.J. Lewerenz, Scavenging of excess Cu atoms in CuInS2 films by sulphur annealing, Solar Energy Materials and Solar Cells, 41-42 (1996) 261-270.
    [96] C.-H. Tsai, J.-M. Ting, R.-R. Wang, Ex situ structural characterization during the formation of CuInS2 thin films, Acta Mater, 59 (2011) 349-354.
    [97] M. Gossla, H. Metzner, H.E. Mahnke, CuInS2 thin-films from co-evaporated precursors, Thin Solid Films, 387 (2001) 77-79.
    [98] J.J.M. Binsma, H.A. Vanderlinden, Preparation of Thin CuInS2 Films Via a two-Stage Process, Thin Solid Films, 97 (1982) 237-243.
    [99] Y. Ogawa, S. Uenishi, K. Tohyama, K. Ito, Preparation and properties of CuInS2 thin films, Solar Energy Materials and Solar Cells, 35 (1994) 157-163.
    [100] S.-H. Wei, S.B. Zhang, A. Zunger, Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties, Applied Physics Letters, 72 (1998) 3199-3201.
    [101] J. Alvarez-Garcia, A. Perez-Rodriguez, A. Romano-Rodriguez, J.R. Morante, L. Calvo-Barrio, R. Scheer, R. Klenk, Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19 (2001) 232-239.
    [102] V. Izquierdo-Roca, A. Perez-Rodriguez, A. Romano-Rodriguez, J.R. Morante, J. Alvarez-Garcia, L. Calvo-Barrio, V. Bermudez, P.P. Grand, O. Ramdani, L. Parissi, O. Kerrec, Raman microprobe characterization of electrodeposited S-rich CuIn(S,Se)2 for photovoltaic applications: Microstructural analysis, Journal of Applied Physics, 101 (2007) 103517.
    [103] M. Nanu, J. Schoonman, A. Goossens, Raman and PL study of defect-ordering in CuInS2 thin films, Thin Solid Films, 451-452 (2004) 193-197.
    [104] J. Eberhardt, K. Schulz, H. Metzner, J. Cieslak, T. Hahn, U. Reislöhner, M. Gossla, F. Hudert, R. Goldhahn, W. Witthuhn, Epitaxial and polycrystalline CuInS2 thin films: A comparison of opto-electronic properties, Thin Solid Films, 515 (2007) 6147-6150.
    [105] J. Eberhardt, J. Cieslak, H. Metzner, T. Hahn, R. Goldhahn, F. Hudert, J. Kräußlich, U. Kaiser, A. Chuvilin, U. Reislöhner, W. Witthuhn, Epitaxial and polycrystalline CuInS2 layers: Structural metastability and its influence on the photoluminescence, Thin Solid Films, 517 (2009) 2248-2251.
    [106] J. Eberhardt, H. Metzner, R. Goldhahn, F. Hudert, U. Reislöhner, C. Hülsen, J. Cieslak, T. Hahn, M. Gossla, A. Dietz, G. Gobsch, W. Witthuhn, Defect-related photoluminescence of epitaxial CuInS2, Thin Solid Films, 480-481 (2005) 415-418.
    [107] J.J.M. Binsma, L.J. Giling, J. Bloem, Luminescence of CuInS2 : I. The broad band emission and its dependence on the defect chemistry, Journal of Luminescence, 27 (1982) 35-53.
    [108] H.Y. Ueng, H.L. Hwang, The Defect Structure of Cuins2 .1. Intrinsic Defects, Journal of Physics and Chemistry of Solids, 50 (1989) 1297-1305.

    無法下載圖示 校內:2016-10-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE