簡易檢索 / 詳目顯示

研究生: 林哲民
Lin, Che-Min
論文名稱: 形狀記憶合金線驅動之微型撓性夾具設計與實做
A Shape Memory Alloy Actuated Microgripper with Wide Handling Ranges
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 76
中文關鍵詞: 力量感測器CO2雷射形狀記憶合金線微型夾具微操作
外文關鍵詞: Micromanipulation, self-sensing, force sensors, CO2 laser, shape memory alloy, flexure, microgripper
相關次數: 點閱:130下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為 結合撓性機構與形狀記憶合金線(簡稱形憶合金線)設計出具有廣操作範圍之微型夾具。近年來,微型夾具在微創手術、微生物抓取、微組裝等需要機械微操作領域中逐漸受到重視,為了適應各種尺寸、剛性、重量之物體,我們設計將形憶合金線之收縮力分佈到夾爪上,以達到廣抓取範圍、高夾爪尺寸比和高機械利益。本論文首先提出一套數學模型來分析利用形憶合金線驅動撓性機構時之材料變形,由此模型,可以計算出在特定的收縮力下,形憶合金線之收縮比以及夾具之變形,並最佳化設計出夾爪的幾何形狀及所需形憶合金線之尺寸。本論文使用CO2雷射於微型手指之加工,並設計出兩種不同剛性之夾爪來進行動態實驗之驗證。由於形憶合金線的高功重比及低驅動電壓,優於其他致動器,因此本微型夾具可同時輕量化且產生大的夾持力。藉由改變輸入電壓之大小,使得形憶合金線產生不同的收縮力,造成夾爪不同的形變及夾持力。以形憶合金線內電阻變化做為回饋之訊號,則形憶合金線可當作自身的收縮力感測器,本論文也探討收縮力與內電阻之關係,作為是否自身感測控制的依據。最後,我們將夾具、形憶合金線、電源、電路整合在一模組中,可將其搭載於各種機械手臂上,期望此微型夾具能廣泛運用在微操作之領域上。

    A compliant two-fingered microgripper with wide handling ranges was designed, fabricated, and demonstrated. The need for microgrippers has recently increased for varied micromanipulations such as minimally invasive surgery and biological objects harvesting. To accommodate objects of various sizes and weights, our gripper is distributedly actuated by shape memory alloy (SMA) wires so that high gripping range to gripper length ratio and mechanical advantage are achieved. A SMA actuated gripper model is presented to predict SMA strain and gripper deflection by using measurements from force sensors. Based on this model, design of the finger shape and specification of SMA wire dimension are facilitated. A fabrication technique by using CO2 laser is developed to manufacture the gripper. Two grippers with different stiffness are prototyped and their motion characteristics are demonstrated. Due to the large stress provided by SMA wires, high gripping force can be obtained. The SMA contraction force to deflect gripper and produce gripping force may be adjusted by changing the input power to SMA wire. We further investigate the feasibility of self-sensing contraction force by using SMA resistance signal. A self-powered gripper module is implemented. It can be attached on any type of manipulators for various types of micromanipulations. With the capabilities of the gripper shown, we expect that it can be applied for miniature robotic manipulations.

    摘要 I ABSTRACT II 致謝 III TABLE OF CONTENTS IV LIST OF TABLES VII LIST OF FIGURES VIII LIST OF SYMBOLS XI CHAPTER 1 INTRODUCTION 1 1.1 Review of Microgrippers 1 1.2 Motivations and Objectives 7 1.3 Organization of Thesis 8 CHAPTER 2 SMA WIRE ACTUATED COMPLIANT FINGER MODEL 9 2.1 Introduction 9 2.2 Finger Segment Model 9 2.3 Hooked Type Compliant Finger 10 2.4 Shape Design of a Compliant Finger 14 2.4.1 Design of a micro finger 14 2.4.2 Experiment validations 21 2.4.3 Sensitivity analysis 23 2.5 Conclusions 25 CHAPTER 3 DEVELOPMENT OF FINGER FABRICATION TECHNIQUES 27 3.1 Introduction 27 3.2 Comparison of Laser Manufactures 28 3.3 Characteristics of CO2 Laser Manufacture 29 3.4 Laser Cutting and Drilling of the Micro Finger 32 3.4.1 Laser cutting of the micro finger 32 3.4.2 Laser drilling of the micro finger 35 3.5 Conclusions 36 CHAPTER 4 CHARACTERISTICS OF THE MICRO FINGER 38 4.1 Introduction 38 4.2 Experiment Setup 39 4.3 Motion Characteristics 40 4.3.1 The relationship between the contraction force and bending angle 41 4.3.2 Hysteresis and power transfer ratio of the finger 43 4.3.3 The gripping force of the micro finger 44 4.4 Resistance of SMA Wires 46 4.5 Conclusions 54 CHAPTER 5 IMPLEMENTATION OF A SELF-POWERED GRIPPER MODULE 55 5.1 Introduction 55 5.2 Design of a Self-powered Gripper Module 56 5.2.1 Circuit design 56 5.2.2 Gripper module design 59 5.3 Demonstration of the Self-powered Gripper Module 61 5.4 Conclusions 64 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 65 6.1 Conclusions 65 6.2 Future Works 66 REFERENCES 69 APPENDIX A THE YOUNG’S MODULUS OF POM 72 PERSONAL COMMUNICATION 75 COPYRIGHT 76

    [1] Dollar, A. M., and Howe, R. D., 2006, “A Robust Compliant Grasper via Shape Deposition Manufacturing,” IEEE/ASME Transactions on Mechatronics, Vol. 11(2), pp. 154-161.
    [2] Lee, K. M., 2001, “Design Criteria for Developing an Automated Live-Bird Transfer System,” IEEE Transactions on Robotics and Automation, Vol. 17(4), pp. 483-490.
    [3] Kim, D. H., Lee, M. G., Kim, B., and Sun, Y., 2005, “A Superelastic Alloy Microgripper with Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: a Numerical and Experimental Study,” Smart Materials and Structures, vol. 15, pp. 1265-1272.
    [4] Thornell, G., Bexell, M., Schweitz, J. and Johansson, S., 1996, “Design and Fabrication of a Gripping Tool for Micromanipulation,” Sensors and Actuators: A. Physical, Vol. 53, pp. 428-33.
    [5] Choi, H. S., Lee, D. C., Koo, S. S. and Han, C. S., 2005, “The Development of Microgripper with a Perturbation-based Configuration Design Method,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1327-1333.
    [6] Kleindiek Microgripper, http://www.nanotechnik.com/
    [7] Volland, B. E., Heerlein, H., and Rangelow, I. W., 2002, “Electrostatically Driven Microgripper,” Microelectronic Engineering, Vol. 61-62, pp. 1015-1023.
    [8] Beyeler, F., Neild, A., Oberti, S., Bell, D. J., Sun, Y., Dual, J., and Nelson, B. J., 2007, “Monolithically Fabricated Microgripper with Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field,” Journal of Microelectromechanical Systems, Vol. 16(1), pp. 7-15.
    [9] Houston, K., Eder, C., Sieber, A., Menciassi, A., Carrozza, M. C., and Dario, P., 2007, “Polymer Sensorised Microgrippers Using SMA Actuation,” Proceedings IEEE International Conference on Robotics and Automation, pp. 820-825.
    [10] Kyung, J. H., Ko, B. G., Ha, Y. H., and Chung, G. J., 2007, “Design of a Microgripper for Micromanipulation of Microcomponents Using SMA Wires and Flexible Hinges,” Sensors and Actuators: A. Physical, Vol. 141, pp. 144-150.
    [11] Konishi, S., Kawai, F., and Cusin, P., 2001, “Thin Flexible End-effector Using Pneumatic Balloon Actuator,” Sensors and Actuators: A. Physical, Vol. 89, pp. 28-35
    [12] Lu, Y. W., and Kim, C. J., 2006, “Microhand for Biological Applications”, Applied Physics Letters, Vol. 89, 164101
    [13] Wakimoto, S., Ogura, K., and Suzumori, K., 2009, “Miniature Soft Hand with Curling Rubber Pneumatic Actuators”, IEEE International Conference on Robotics and Automation, pp 556-561.
    [14] Lumia, R. and Shahinpoor, M., 2008, “IPMC Microgripper Research and Development,” Journal of Physics: Conference Series, Vol. 127, 012002.
    [15] Abe, R., Takemura, K., Edamura, K., and Yokota, S., 2007, “Concept of a Micro Finger Using Electro-conjugate Fluid and Fabrication of a Large Model Prototype,” Sensors and Actuators: A. Physical, Vol. 136(2), pp. 629-637.
    [16] Pérez, R., Agnus, J., Clévy, C., Hubert, A., and Chaillet, N., 2005, “Modeling, Fabrication, and Validation of a High-Performance 2-DoF Piezoactuator for Micromanipulation,” IEEE/ASME Transactions on Mechatronics, Vol. 10(2), pp. 161-171.
    [17] Kohl, M., Krevet, B. and Just, E., 2002, “SMA Microgripper System,” Sensors and Actuators: A. Physical, Vol. 97-98, pp. 646-652.
    [18] Molhave, K. and Hansen, O., 2005, “Electro-thermally Actuated Microgrippers with Integrated Force-feedback,” Journal of Micromechanics and Microengineering, Vol. 15(6), pp. 1265-1270.
    [19] Chronis, N. and Lee, L. P., 2005, “Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution,” Journal of Microelectromechanical System, Vol. 14(4), pp. 857-863.
    [20] Kim, C. J., Pisano, A. P., Muller, R. S., and Lim, M. G., 1992, “Polysilicon Microgripper,” Sensors and Actuators: A. Physical, Vol. 33, pp. 221-227.
    [21] Malukhin, K. and Ehmann, K. F., 2008, “An Experimental Investigation of the Feasibility of ”Self-Sensing” Shape Memory Alloy Based Actuators,” ASME Journal of Manufacturing Science and Engineering, Vol. 130, 031109.
    [22] Lan, C. C. and Yang, Y. N., 2008, “A Computational Design Method for Shape Memory Alloy Wire Actuated Compliant Finger,” ASME Journal of Mechanical Design, Vol. 131, 021009.
    [23] Lan, C. C. and Cheng, Y. J., 2008, “Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Function,” ASME Journal of Mechanical Design, Vol. 130, 072304.
    [24] Lan, C. C. and Lee, K. M., 2006, “Generalized Shooting Method for Analyzing Compliant Mechanisms with Curved Members,” ASME Journal of Mechanical Design, Vol. 128, Issue 4, pp. 765-775
    [25] Dynalloy, Inc. http://www.dynalloy.com/
    [26] Steen, W. M., 1991, “Laser Material Processing,” London: Springer.
    [27] Hambley, A. R., 2008, “Electrical Engineering: Principles and Applications,” PERSON Press.
    [28] Wu, X. D., Wu, J. S., and Wang, Z., 1999, “The Variation of Electrical Resistance of Near Stoichiometric NiTi During Thermo-mechanic Procedures,” Smart Materials and Structures, Vol. 8, pp. 574-578.
    [29] Ma, N., Song, G., and Lee, H. J., 2004, “Position Control of Shape Memory Alloy Actuators with Internal Electrical Resistance Feedback Using Neural Networks,” Smart Materials and Structures, Vol. 13, pp. 777-783.
    [30] Lagoudas, D. C., 2008, “Shape Memory Alloys: Modeling and Engineering Applications,” New York: Springer.
    [31] Wang, Z., Hang, G., Li, J., Wang, Y., and Xiao, K., 2008, “A Micro-robot Fish with Embedded SMA Wire Actuated Flexible Biomimetic Fin,” Sensors and Actuators: A. Physical, Vol. 144, pp. 354-360.
    [32] http://www.jetpcb.com/cht/default.aspx

    下載圖示 校內:2012-07-23公開
    校外:2012-07-23公開
    QR CODE