簡易檢索 / 詳目顯示

研究生: 李靖宇
Lee, Ching-Yu
論文名稱: RNA 干擾現象(RNAi)提高人類肺癌細胞株 A549 抗病毒能力之研究
Double-stranded RNA induced RNA interference (RNAi) promotes anti-viral effect in A549 human lung cancer cells
指導教授: 吳文鑾
Wu, Wen-Luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物學系
Department of Biology
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 56
中文關鍵詞: 抗病毒RNA干擾
外文關鍵詞: RNAi, antivirus
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RNA干擾(RNA interference, RNAi)現象,是一種雙股RNA (double-stranded RNA, dsRNA)引起的基因沉默現象。在許多生物中都已證實有RNAi現象發生,包括阿拉伯芥、菸草、線蟲、果蠅、斑馬魚以及老鼠等。由線蟲(C. elegans)的研究發現Dicer基因缺失的幼體會使得線蟲體內一種類似siRNA (small interfering RNA),具有調控發育功能的stRNA (small temporal RNA)無法產生,導致幼蟲不能正常發育為成蟲。也有研究指出RNAi所造成的基因沉默現象屬於植物抗病毒機制之一種,因此RNAi可能與生物抵抗病毒感染或是與跳躍子(transposon)的調控有關。本實驗以人類肺癌細胞株(A549)及野生型腺病毒(adenovirus)第五型(Ad5)為模式探討RNAi與哺乳動物細胞對抗病毒感染機制之關係。首先建構表現雙股E1A (dsE1A)基因的載體,並轉染至A549細胞中;將Ad5感染表現dsE1A基因的細胞(A549/β actin-dsE1A-9)時,A549/β actin-dsE1A-9細胞在相同病毒濃度時對病毒感染的細胞病變程度明顯比A549細胞低。為了避免干擾素造成的非專一性基因沉默,在培養細胞的培養液中加入RNase L抑制劑(ZnCl2),發現A549/β actin-dsE1A-9細胞對病毒感染的細胞病變程度更為降低;顯示此抗病毒機制有干擾素引起的非專一性基因沈默參與。為了進一步證明實驗中對病毒的抗性與RNAi有關,有序列專一性的特性,改用與Ad5不同群組的Ad3病毒感染細胞,A549/β actin-dsE1A-9與A549細胞對Ad3的細胞病變程度並無差異,顯示細胞病變具有序列專一性,並且siRNA的分析實驗結果也印證RNAi現象確實發生。因此RNAi現象不但可在人類細胞株中發現,亦為哺乳動物細胞抵抗病毒感染的機制之一。

    RNA interference (RNAi) phenomenon is a double-stranded RNA induced sequence specific gene silencing. RNAi was also observed in Arabidopsis, tobacco, nematode, Drosophila, zebra fish, and mice. Recent studies in C. elegans have identified a protein, Dicer, that specifically cleaves double stranded RNA into siRNA (small interfering RNA). The dicer deficient larvae could not produce a siRNA like RNA, stRNA (small temporal RNA), to transform from larvae to adult. Genetic studies have extended RNAi to either one of anti-viral effects in plant or transposon regulation. In this study, we used A549 human lung carcinoma cell line and wild type adenovirus type 5 (Ad5) as a model to characterize the relationships between anti-viral effect and RNAi in mammalian cells. A549/β actin-dsE1A-9 cells, which carried partial Ad5 E1A gene, and parental A549 cells exhibited distinct responses when they were infected with Ad5. A549/β actin-dsE1A-9 cells were more resistant to Ad5 infection at the same titer compared with A549 cells. Interferon responses may be induced by virus infection in mammalian cells, resulting in non-sequence-specific gene silencing or even apoptosis. Further experiment by addition of RNase L inhibitor ZnCl2 showed promotion of the anti-viral effect in A549/β actin-dsE1A-9 cells, therefore excluding the effect of IFN-induced non-sequence-specific gene silencing. To confirm that the anti-viral effect was sequence-specific to RNAi, Ad3, which belongs to a different group of adenovirus, was used to infect A549/β actin-dsE1A-9 cells in comparison to Ad5. The susceptibilities of A549/β actin-dsE1A-9 and A549 cells to Ad3-induced cytopathic effect were similar. Further detection of the Ad5 E1A gene siRNA showed RNAi phenomenon happened, demonstrating that the anti-viral effect is sequence-specific and induced by RNAi.

    中文摘要.....................................................................................................i 英文摘要....................................................................................................ii 誌謝...........................................................................................................iii 第一章、緒論 一、 RNA干擾的功能及其生物意義.......................................................1 (一) 轉錄的基因沉默 (transcriptional gene silencing, TGS):.........2 (二) 轉錄後的基因沉默 (post-transcriptional gene silencing, PTGS):........................................................................................2 二、腺病毒..................................................................................................3 三、研究目的..............................................................................................5 第二章、材料與方法 一、菌種與質體..........................................................................................7 二、 細胞株................................................................................................7 三、 病毒....................................................................................................7 四、實驗方法 (一) 聚合酵素連鎖反應大量製備E1A基因片段...........................8 (二) DNA的膠體電泳.......................................................................9 (三) 由瓊脂凝膠中回收DNA片段..................................................9 (四) T-A Cloning..............................................................................10 (五) 接合反應.................................................................................10 (六) 轉型實驗.................................................................................10 (七) 微量製備質體DNA (Miniprep)..............................................11 (八) 大量製備質體DNA (Maxiprep).............................................11 (九) 限制酵素切割質體.................................................................12 (十) 細胞的次培養.........................................................................12 (十一) 細胞的計數.........................................................................13 (十二) 哺乳類之細胞之質體轉型作用.........................................13 (十三) 病毒的培養.........................................................................14 (十四) 細胞病變測定 (CPE).........................................................14 (十五) 病毒斑形成分析 (Plaque forming assay)..........................15 (十六) 哺乳動物細胞株DNA的萃取............................................15 (十七) 哺乳動物細胞株RNA的萃取............................................16 (十八) RNA電泳..............................................................................16 (十九) 分析小片段RNA.................................................................17 第三章、結果 一、 腺病毒E1A基因的擴增及序列比對..............................................18 二、 建構表現腺病毒E1A基因雙股RNA的質體................................18 三、 建立持續產生雙股RNA的A549細胞株.......................................19 四、 病毒感染表現E1A基因雙股RNA的A549細胞株......................20 五、 氯化鋅抑制RNase L作用...............................................................21 六、 抗病毒專一性探討..........................................................................21 七、 小片段RNA的分析.........................................................................22 第四章、討論 一、 腺病毒E1A基因的擴增..................................................................23 二、 建立持續產生雙股RNA的載體.....................................................24 三、 病毒感染表現E1A基因雙股RNA的A549細胞株......................25 四、 抗病毒的專一性..............................................................................26 五、 RNAi現象與細胞抗病毒之關係....................................................26 參考文獻..................................................................................................28 附錄..........................................................................................................50

    Adrian T., Sassinek J., Wigand R. Genome type analysis of 480 isolates of adenovirus 1, 2, and 5. Archives of Virology (1990), 112: 23548
    Angell M., and Baulcombe D. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. The EMBO Journal (1997), 16: 3675-3684
    Bass B. Double-stranded RNA as a template for gene silencing. Cell (2000), 101: 235-238
    Bernstein E., Caudy A., Hammond S., and Hannon G. Role for a bidentate ribonuclease in the inition step of RNA interference. Nature (2001), 409: 363-366
    Billy E., Brondani V., Zhang H., Müller U., and Filupowicz W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proceedings of the National Academy of Science of the United States of America (2001), 98: 14428-14433
    Bischoff J. R., Kirn D. H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J. A., Sampson-Johannes A., Fattaey A., and McCormick F. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science (1996), 274: 373-376
    Bosher J., and Labouesse M. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology (2000), 2: E31-6
    Brantl S. Antisense-RNA regulation and RNA interference. Biochimica et Biophysica Acta (2002), 1575: 15-25
    Chuang C., and Meyerowitz E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Science of the United States of America (2000), 97: 4985-4990
    Chung C., and Miller R. A rapid and convenient method for the preparation and storage of competent bacterial cells. Nucleic Acids Research (1988), 16: 3580
    Clemens J., Worby C., Simonson-Leff N., Muda M., Maehama T., Hemmings B. A., and Dixon J. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Science of the United States of America (2000), 97: 6499-6503
    Cristiano R., Simith L., Key M., Brickly B., and Woo S. Hepatic gene therapy: Efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proceedings of the National Academy of Science of the United States of America (1993), 90: 11548-11552
    Elbashir S. M., Lendeckel W., and Tuschel T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes and Development (2001), 15: 188-200
    Flomenberg P., Chen M., Munk G., and Horwitz M. Molecular epidemology of adenovirus type 35 infections in immunocompromised hosts. The Journal of Infectious Disease (1987), 155: 1127-1134
    Fire A. RNA-triggered gene silencing. Trends in Genetics (1999), 15: 358-363
    Fire A., Xu S., Montgomery M., Kostas S., Driver S., and Mello C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature (1998), 391: 806-811
    Gaynor R., and Berk A. Cis-acting induction of adenovirus transcription. Cell (1983), 33: 683-693
    Ginsburg H., and Prince G. The molecular basis of adenovirus pathogenesis. Infectious Agents and Disease (1994), 3: 1-8
    Goldsby R., Kindt T. and Osborne B. Immunology 4th edition, W. H. Freeman and company (2000)
    Grishok A., Pasquinelli A E., Conte D., Li N., Parrish S., Ha I., Ballie D. L., Fire A., Ruvkun G., and Mello C. C. Genes and mechanisms related to RNA interference regulation expression of the small temporal RNAs that control C. elegans developmental timming. Cell (2001), 106: 23-34
    Hammond S. M., Bernstein E., Beach D., and Hannon G. j. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature (2000), 404: 293-296
    Hannon G. J. RNA interference. Nature (2002), 418: 244-251
    Hartmann R., Walko G., and Justesen J. Inhibition of 2′,5′ oligoadenylate synthetase by divalent metal ions. FEBS letters (2001), 507: 54-58
    Homann M., Nedbal W., and Sczakiel G. Dissociation of long-chain duplex RNA can occur via strand displacement in vitro: biological implications. Nucleic Acids Research (1996), 15: 4395-4400
    Ish-Horawicz D., and Bruk J. Rapid and efficient cosmid cloning. Nucleic Acids Research (1981), 9: 2898-2998
    Iyer L., Kumpatla S., Chandrasekharan M., and Hall T. Transgene silencing in monocots. Plant Molecular Biology (2000), 43: 323-346
    Jesen S., Gassama M. P., and Heidmann T. Taming of transposable elements by homology-dependent gene silencing. Nature Genetics (1999), 21: 209-212
    Kadereit S., Xu H., Engeman T., Yang Y., Fairchild R., and Williams B. Negative regulation of CD8+ T cell function by the IFN-induced and double-stranded RNA-activated kinase PKR. The Journal of Immunology (2000), 165: 6896-6901
    Ketting R. F., Haverkamp H. A., van Luenen H. G. A. M., and Plasterk, R. H. A. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner Syndrome Helicase and RNaseD. Cell (1999), 99: 133-141
    Kuwabara P., and Coulson A. RNAi--prospects for a general technique for determining gene function. Parasitology Today (2000), 16: 347-349
    Kooter J., Matzke M. A., and Meyer P. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends in Plant Science (1999), 4: 340-346
    Lee S., and Hung P., Vaccines for control of respiratory disease caused by adenoviruses. Reviews in Medical Virology (1993), 3: 209
    Lipardi C., Wei Q., and Paterson B. M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNA that are degraded to generate new siRNAs. Cell (2001), 107: 297-307
    Lohmann J. U., Endl I., and Bosh T. C. Silencing of developmental genes in Hydra. Developmental Biology (1999), 214: 211-214
    Mette M., Aufsatz W., Winden J, Matzke M and Matzke A. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. The EMBO Journal (2000), 19: 5194-5201
    Mourrain P., Beclin C., Elmayan T., Feuerbach F., Godon C., Morel JB., Jouette D., Lacombe A., Nikic S., Picault N., Remoue K., Sanial M., Vo T., and Vaucheret H. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell (2000), 101: 533-542
    Nakano H., Amemiya S., Shiokawa K., and Taira M. RNA interference for the organizer-specific gene Xlim-1 in Xenopus embryos. Biochemical and Biophysical Research Communications (2000), 274: 434-439
    Ngo H. C., Tschudi K., and Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proceedings of the National Academy of Science of the United States of America (1998), 95: 14687-14692
    Napoli C., Lemieux C., and Jorgensen R. A. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-supression of homologous genes in trans. Plant Cell, (1990), 2: 279-289
    Neuhuber F., Park Y., Matzke A., and Matzke M. Susceptibility of transgene loci to homology-dependent gene silencing. Molecular and General Genetics (1994), 244: 230-241
    Ratcliff F., Harrison B. D., and Baulcombe D. C. A similarity between viral defense and gene silencing in plants. Science (1997), 276: 1558-1560
    Sambrook, J., Fritsch, E. F. and Maniatis, T. Molecular Cloning. A Laboratory Manual. 3rd ed. Cold Spring Habor Laboratory Press. (2001)
    Sharp P. A. RNAi and double-strasnd RNA. Genes and Development (1999), 13: 139-141
    Sharp P. A. RNA interference-2001. Genes and Development (2001), 15: 485-490
    Shiau A. L., Liu C. W., Wang S. Y., Tsai C. Y., and Wu C. L. A simple selection system for construction of recombinant gD-negative pseudorabies virus as a vaccine vector. Vaccine (2002), 20: 1186-1195.
    Sijen T., Fleenor J., Simmer F., Thijssen K. L., Parrish S., Timmons L., Plasterk R. H.A., and Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell (2001), 107: 465-476
    Stark G, Kerr I, Williams B., Silverman R., and Schreiber R. How cells respond to interferons. Annual Review of Clinical Biochemistry (2000), 67: 227-264
    Svoboda P., Stein P., Hayashi H., and Schultz R. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development (2000), 127: 4147-4156
    Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., Fire A., and Mello C. C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell (1999), 99: 123-132
    Tuschl T., Zamore P. D., Lehmann R., Bartel D. P., and Sharp P. A. Targetted mRNA degradation by double-stranded RNA in vitro. Genes and Development (1999), 13: 3191-3197
    Ui-Tei K., Zenno S., Miyata Y., and Saigo K. Sensitive assay of RNA interference in Drosophila and chinese hamster cultured cells using firefly luciferase gene as target. FEBS letters (2000), 479: 79-82
    Wagner E., and Hewlett M. Basic Virology, Blackwell science Inc. 1999
    Wilson J. Adenoviruses as gene delivery vehicles. The New England Journal of Medicine (1996), 334: 1185-1187
    Waterhouse P. M., Wang M. B., and Lough T. Gene silencing as an adaptive defence against viruses. Nature (2001), 411: 834-842
    Wolffe A., and Matzke M. Epigenetics: regulation through repression. Science (1999), 286: 481-486
    Yang D., Lu H., and Erckson J. Evidence that processed small dsRNA may mediate sequence-specific mRNA degradation during RNAi in Drosophilia embryos. Current Biology (2000), 10: 1191-1200
    Yang S., Tutton S., Pierce E., and Yoon K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Molecular and Cellular Biology (2001), 21: 7807-7816
    Zamore P., Tuschl T., Sharp P., and Bartel D. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell (2000), 101: 25-33
    Zhixing Z, Ying C, Ming L, and Anming M. Double-stranded RNA injection produces nonspecific defects in zebra fish. Developmental Biology (2001), 229: 215-23

    下載圖示 校內:2003-09-02公開
    校外:2003-09-02公開
    QR CODE