簡易檢索 / 詳目顯示

研究生: 賴思妤
Lai, Ssu-Yu
論文名稱: 混合自適應粒子群優化與灰狼優化之含隨機基本模型的集成演算法
Ensemble Algorithms with Random Base Models Based on a Hybrid of Adaptive Particle Swarm Optimization and Grey Wolf Optimization
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 69
中文關鍵詞: 集成學習羅吉斯迴歸簡易貝氏混合自適應粒子群優化與灰狼優化
外文關鍵詞: Ensemble Learning, Hybrid of Adaptive Particle Swarm Optimization and Grey Wolf Optimizer, Logistic Regression, Naive Bayes
相關次數: 點閱:33下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的集成學習研究中,有研究透過隨機生成分類模型,使集成模型不再受限於原始資料的分布,比傳統集成模型更有效地提升預測能力,然而這類方法可能生成出預測能力較差的分類模型,因此必須先生成大量的分類模型,再透過門檻值進行篩選以確保集成模型的效能,這不僅會浪費計算資源,還顯著增加了運算時間,除了使用門檻值來篩選合適的分類模型外,數學規劃法和元啟發式演算法也可用於搜索適合的分類模型,然而數學規劃法僅適用於較小的解空間中,當解空間較大時其計算效率會顯著下降,且通常需要滿足特定的約束條件,相比之下,元啟發式演算法較適合處理解空間較大的複雜問題,能快速找到近似最佳解,並且有較高的計算效率。目前已有研究使用粒子群優化演算法,透過逐步優化隨機生成的分類模型,節省了生成大量隨機分類模型再進行過濾的時間,該方法在提升純隨機羅吉斯迴歸集成模型的運算效率頗有成效,然而在提升純隨機簡易貝氏集成模型的運算效率仍然有限。
    為了改善粒子群優化演算法在純隨機簡易貝氏集成模型訓練中,運算效率提升有限的問題,本研究採用混合自適應粒子群優化與灰狼優化演算法,透過結合灰狼優化演算法的全局搜索能力,並引入自適應參數調整機制,以提升粒子在不同階段搜索的靈活性,加速分類模型的尋找,從而提升集成模型的運算效率與預測性能。實驗結果顯示,混合自適應粒子群優化與灰狼優化演算法應用於純隨機羅吉斯迴歸集成模型時,相較粒子群優化演算法在運算效率上提升約兩倍;與簡易貝氏集成模型相比,運算時間則可縮短約二至三倍,且能維持相同的分類效能,此外混合自適應粒子群優化與灰狼優化演算法在處理大資料集時能展現出更顯著的運算效率優勢,顯示其在實務應用中具備較高的可行性。

    Recent studies in ensemble learning have shown that generating classification models randomly can improve predictive performance by avoiding the reliance on original data distribution. However, such approaches approach is computationally intensive, because it filters a base model from thousands of randomly-generated classification models. To address this, optimization techniques such as mathematical programming and metaheuristic algorithms have been used to search for suitable models. While mathematical programming is limited to small solution spaces and specific constraints, metaheuristic algorithms are better suited for complex problems with large search spaces. Previous research applied Particle Swarm Optimization (PSO) to incrementally improve random logistic regression ensemble models, significantly reducing runtime. However, its efficiency gains for naive Bayes ensembles remain limited. This study proposes a Hybrid of Adaptive Particle Swarm Optimization and Grey Wolf Optimization -Ensemble of Random Logistic Regression (APSOGWO), integrating global search capability and adaptive parameter tuning to enhance both search flexibility and convergence speed. Experimental results demonstrate that APSOGWO improves runtime efficiency by approximately twofold for Logistic Regression ensembles and reduces execution time by two to three times for Naïve Bayes ensembles, all while maintaining comparable classification performance. Moreover, APSOGWO demonstrates more significant efficiency advantages when handling large-scale datasets, indicating higher feasibility and potential for practical applications.

    摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 3 第二章 文獻探討 4 2.1 集成學習 4 2.2 元啟發式演算法 6 2.2.1 常見的元啟發式演算法 7 2.2.2 元啟發式演算法用於機器學習 8 2.3 分類演算法之集成應用 9 2.4 粒子群優化與灰狼優化演算法 12 2.4.1 粒子群優化演算法 13 2.4.2 灰狼優化演算法 14 2.4.3 混合自適應粒子群優化與灰狼優化演算法 16 2.5 小結 18 第三章 研究方法 20 3.1 研究方法流程 20 3.2 資料前處理與分割 24 3.3 隨機生成羅吉斯迴歸與簡易貝氏分類模型 24 3.4 混合自適應粒子群優化與灰狼優化演算法 26 3.5 集成模型的生成 29 3.6 實驗結果評估 29 第四章 羅吉斯迴歸實證研究 32 4.1 資料集與實驗環境介紹 32 4.2 實驗參數設定 34 4.3 實驗結果與分析 35 4.3.1 正確率比較 36 4.3.2 運算效率比較 40 4.4 小結 43 第五章 簡易貝式實證研究 44 5.1 資料集介紹 44 5.2 實驗參數設定 45 5.3 實驗結果與分析 46 5.3.1 正確率比較 47 5.3.2 運算效率比較 49 5.4 小結 51 第六章 結論與建議 53 6.1 結論 53 6.2 未來展望 54 參考文獻 55

    何政賢,(2024) 以粒子群最佳化方法優化應用於二類別資料之隨機集成演算法。國立成功大學資訊管理研究所碩士班碩士論文。
    徐心縈,(2023) 用羅吉斯迴歸建構隨機分類模型之集成方法。國立成功大學資訊管理研究所碩士班碩士論文。
    黃中立,(2023) 以簡易貝氏分類器隨機生成基本模型之集成方法。國立成功大學資訊管理研究所碩士班碩士論文。
    Abikoye, O. C., Omokanye, S. O., & Aro, T. O. (2017). Binary text classification using an ensemble of naive bayes and support vector machines. Computer Sciences and Telecommunications, 2, 37–45.
    Ahmad, T. & Aziz, M. N. (2019). Data preprocessing and feature selection for machine learning intrusion detection systems. ICIC Express Letters, 13(2), 93-101.
    Beni, G. & Wang, J. (1993). Swarm intelligence in cellular robotic systems. In Proceedings of the Robots and Biological Systems: Towards a New Bionics (pp. 703–712). Springer.
    Blum, C. & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys , 35(3), 268-308.
    Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82-117.
    Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
    Cavalcanti, G. D., Oliveira, L. S., Moura, T. J., & Carvalho, G. V. (2016). Combining diversity measures for ensemble pruning. Pattern Recognition Letters, 74, 38-45.
    Chen, X., Zhu, C.-C., & Yin, J. (2019). Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Computational Biology, 15(7), e1007209.
    Desale, S., Rasool, A., Andhale, S., & Rane, P. (2015). Heuristic and meta-heuristic algorithms and their relevance to the real world: A survey. International Journal of Computer Engineering Research Trends, 351(5), 2349–7084.
    Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14, 241-258.
    Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in
    particle swarm optimization. Proceedings of the 2000 Congress on Evolutionary
    Computation., 1, 84-88.
    El-Hasnony, I. M., Barakat, S. I., Elhoseny, M., & Mostafa, R. R. (2020). Improved feature selection model for big data analytics. IEEE Access, 8, 66989-67004.
    Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf optimizer: A review of recent variants and applications. Neural Computing and Applications, 30, 413-435.
    Freund, Y. & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference on Machine Learning (pp. 148–156).
    Gandomi, A. H., Yang, X.-S., Talatahari, S., & Alavi, A. H. (2013). Metaheuristic algorithms in modeling and optimization. Metaheuristic Applications in Structures and Infrastructures, 1, 1-24.
    Gary, M. R. & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company.
    Ghiasi, M. M. & Zendehboudi, S. (2021). Application of decision tree-based ensemble learning in the classification of breast cancer. Computers in Biology and Medicine, 128, 104089.
    Hansen, L. K. & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993-1001.
    Hasanpour, H., Meibodi, R. G., & Navi, K. (2019). Optimal selection of ensemble classifiers using particle swarm optimization and diversity measures. Intelligent Decision Technologies, 13(1), 131-137.
    Heidari, A. A. & Pahlavani, P. (2017). An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Applied Soft Computing, 60, 115-134.
    Hirst, G., Mann, L., Bain, P., Pirola-Merlo, A., & Richver, A. (2004). Learning to lead: The development and testing of a model of leadership learning. The Leadership Quarterly, 15(3), 311-327.
    Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press.
    Hu, P., Pan, J. S., & Chu, S. C. (2020). Improved binary grey wolf optimizer and its application for feature selection. Knowledge-Based Systems, 195, 105746.
    Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (Vol. 4, pp. 1942–1948). IEEE.
    Khajehzadeh, M., Taha, M. R., El-Shafie, A., & Eslami, M. (2011). A survey on meta-heuristic global optimization algorithms. Research Journal of Applied Sciences, Engineering and Technology, 3(6), 569-578.
    Kuswanto, H., Asfihani, A., Sarumaha, Y., & Ohwada, H. (2015). Logistic regression ensemble for predicting customer defection with very large sample size. Procedia Computer Science, 72, 86-93.
    Menard, S. (2001). Applied Logistic Regression Analysis. SAGE publications.
    Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46-61.
    Mohammed, A. M., Onieva, E., & Woźniak, M. (2022). Selective ensemble of classifiers trained on selective samples. Neurocomputing, 482, 197–211.
    My, B. T. & Ta, B. Q. (2023). An interpretable decision tree ensemble model for imbalanced credit scoring datasets. Journal of Intelligent & Fuzzy Systems, 45(6), 1-12.
    Nti, I. K., Nyarko-Boateng, O., & Aning, J. (2021). Performance of machine learning algorithms with different K values in K-fold cross-validation. International Journal of Information Technology and Computer Science, 13(6), 61-71.
    Opitz, D. W. & Shavlik, J. W. (1996). Actively searching for an effective neural network ensemble. Connection Science, 8(3–4), 337–354.
    Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of artificial intelligence research, 11, 169-198.
    Peres, F. & Castelli, M. (2021). Combinatorial optimization problems and metaheuristics: Review, challenges, design, and development. Applied Sciences, 11(14), 6449.
    Sagi, O. & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249.
    Salih, S. Q. & Alsewari, A. A. (2020). A new algorithm for normal and large-scale optimization problems: Nomadic people optimizer. Neural Computing and Applications, 32(14), 10359-10386.
    Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197-227.
    Shafqat, W., Malik, S., Lee, K.-T., & Kim, D.-H. (2021). PSO based optimized ensemble learning and feature selection approach for efficient energy forecast. Electronics, 10(18), 2188.
    Shen, C. & Zhang, K. (2022). Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification. Complex & Intelligent Systems, 8(4), 2769-2789.
    Smith, A. W. (1997). Leadership is a living system: Learning leaders and organizations. Human Systems Management, 16(4), 277-284.
    Subramanian, R. S. & Prabha, D. (2022). Ensemble variable selection for Naive Bayes to improve customer behaviour analysis. Computer Systems Science & Engineering, 41(1), 339-355.
    Tsoumakas, G., Partalas, I., & Vlahavas, I. (2008, July). A taxonomy and short review of ensemble selection. Workshop on Supervised and Unsupervised Ensemble Methods and Their Applications (pp. 1-6).
    Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.
    Wilson, E. O. (2000). Sociobiology: The New Synthesis. Harvard University Press.
    Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259.
    Xue, Y., Tang, T., Pang, W., & Liu, A. X. (2020). Self-adaptive parameter and strategy based particle swarm optimization for large-scale feature selection problems with multiple classifiers. Applied Soft Computing, 88, 106031.
    Ye, Z., Xu, Y., He, Q., Wang, M., Bai, W., & Xiao, H. (2022). Feature selection based on adaptive particle swarm optimization with leadership learning. Computational Intelligence and Neuroscience, 2022(1), 1825341.
    Yi, L. (2016). Study on an improved PSO algorithm and its application for solving function problem. International Journal of Smart Home, 10(3), 51–62.
    Zhang, C. & Ma, Y. (2012). Ensemble Machine Learning: Methods and Applications. Springer-Verlag.
    Zhang, Y., Gong, D., Hu, Y., & Zhang, W. (2015). Feature selection algorithm based on bare bones particle swarm optimization. Neurocomputing, 148, 150-157.
    Zhu, B., Qian, C., vanden Broucke, S., Xiao, J., & Li, Y. (2023). A bagging-based selective ensemble model for churn prediction on imbalanced data. Expert Systems with Applications, 227, 120223.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE