研究生: |
林辛承 Lin, Hsin-Cheng |
---|---|
論文名稱: |
使用泛用型普氏分析整合消費者回應特徵並建構預測模型-以隨身碟為例 Applying Generalized Procrustes Analysis in Integrations of Characteristics of Consumer’s Response and Conducting Model Prediction - Using Flash Drives as Case Study |
指導教授: |
謝孟達
Shieh, Meng-Dar |
學位類別: |
碩士 Master |
系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 泛用型普氏分析 、隨身碟 、彈性問卷 、消費者特徵 |
外文關鍵詞: | Generalized Procrustes Analysis, Flash Drive, Flexible Questionnaire, Consumer Feature |
相關次數: | 點閱:68 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用泛用型普氏分析結合彈性問卷進行隨身碟之感性工學研究,預期透過方法論的引入,使得彈性問卷評價方式能夠使用於產品意象評估,不只作為傳統研究方法的輔助手段,更能夠進一步成為量測消費者意向的主要測量工具。
研究流程包括探討使用彈性問卷的實驗流程與結果,與傳統研究方法之間的異同;透過「使用者個別特徵萃取」、「建立樣本偏好分布」以及「使用者分群效力」等三個面向,嘗試建立比較項目以理解方法論之間的差異。並探討分析所得之受測者特徵資料可應用於感性工學研究中的哪些層面。
研究以隨身碟為例,結果顯示1.一般問卷使用泛用型普氏分析,能夠得到接近傳統研究的形容詞分析成果。2.泛用型普氏分析更能夠從傳統方法無力處理的彈性問卷中萃取出形容詞成分,以用於建立隨身碟偏好分布圖。3.彈性問卷在獲取受測者評價上,較一般問卷方式能夠得到更完整的評價分布。4.使用泛用型普氏分析所得到的消費者回應特徵,可用來做為受測者分群的指標,進一步提升分群的效度。
This study focuses on applying Generalized Procrustes Analysis (GPA) in conducting Kansei Engineering System (KES) research on flash drives, which is hoped to introduce “flexible questionnaire assessments” as a way of evaluating product perception through the conducting of methodology. And by using of the method, it would become not only a supportive technique of the traditional fashion, but also the primarily measurements of how consumers are thinking.
The study includes three aspects for comparing the differences between traditional methods and the proposed method: The extraction of individual features, sample preference mapping, and the effectiveness of clustering. Further discussion would be on the application of subjects’ responsive features inside of the KES research.
The result shows that 1. Using GPA on normal questionnaires can derive results similar to the traditional analytical method. 2. GPA can even extract constructs out of flexible questionnaires for further preference mapping of the samples, which normal methods cannot. 3. Conducting flexible questionnaires assessments would have a more comprehensive feedback on sample evaluations than the normal questionnaires. 4. With the use of GPA, the subjects’ affective response can be retrieved and applied, which raises the effectiveness of clustering analysis.
Böckenholt, U. (2004). Comparative Judgments as an Alternative to Ratings: Identifying the Scale Origin. Psychological Methods, 9(4), 453-465.
De Jong, S., Heidema, J., & van der Knaap, H. C. M. (1998). Generalized procrustes analysis of coffee brands tested by five European sensory panels. Food Quality and Preference, 9(3), 111-114.
Fillion, L., & Kilcast, D. (2002). Consumer perception of crispness and crunchiness in fruits and vegetables. Food Quality and Preference, 13(1), 23-29.
Gower, J. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33-51.
Hein, K. A., Jaeger, S. R., Tom Carr, B., & Delahunty, C. M. (2008). Comparison of five common acceptance and preference methods. Food Quality and Preference, 19(7), 651-661.
Hughes, G. D. (1975). Upgrading Semantic Differential. Journal of the Market Research Society, 17(1), 41-44.
Meullenet, J. F., Xiong, R., & Findlay, C. J. (2007). Multivariate and probabilistic analyses of sensory science problems (1st ed.). [Chicago, Ill.] Ames, Iowa: IFT Press ; Blackwell Pub, 37-43.
Mireaux, M., Cox, D. N., Cotton, A., & Evans, G. (2007). An adaptation of repertory grid methodology to evaluate Australian consumers' perceptions of food products produced by novel technologies. Food Quality and Preference, 18(6), 834-848.
Nagamachi, M. (1995). Kansei Engineering: A new ergonomic consumer-oriented technology for product development. International Journal of Industrial Ergonomics, 15(1), 3-11.
Napolitano, F., De Rosa, G., Braghieri, A., Grasso, F., Bordi, A., & Wemelsfelder, F. (2008). The qualitative assessment of responsiveness to environmental challenge in horses and ponies. Applied Animal Behaviour Science, 109(2-4), 342-354.
Osgood, C. E. (1952). The nature and measurement of meaning. Psychol Bull, 49(3), 197-237.
Russell, C. G., & Cox, D. N. (2004). Understanding middle-aged consumers' perceptions of meat using repertory grid methodology. Food Quality and Preference, 15(4), 317-329.
Sahmer, K., & Qannari, E. M. (2008). Procedures for the selection of a subset of attributes in sensory profiling. Food Quality and Preference, 19(2), 141-145.
Schütte, S. T. W., Eklund, J., Axelsson, J. R. C., & Nagamachi, M. (2004). Concepts, methods and tools in Kansei engineering. Theoretical Issues in Ergonomics Science, 5(3), 214 - 231.
Smith, W. R. (1956). Product Differentiation and Market Segmentation as Alternative Marketing Strategies. The Journal of Marketing, 21(1), 3-8.
Steenkamp, J. B. E. M., Trijp, H. C. M. v., & Verhallen, T. M. M. (1987). An integrated procedure for building a common perceptual space based on completely individualized data collection. Contemporary Research in Marketing: Proceedings of the 16th Annual Conference of the European Marketing Academy. Toronto, Canada: York University. pp.WD5-WD18.
Teichert, T., Shehu, E., & von Wartburg, I. (2008). Customer segmentation revisited: The case of the airline industry. Transportation Research Part A: Policy and Practice, 42(1), 227-242.
Xiong, H., Zhang, D., Martyniuk, C. J., Trudeau, V. L., & Xia, X. (2008). Using generalized procrustes analysis (GPA) for normalization of cDNA microarray data. BMC Bioinformatics, 9, 25.
Yamamoto, K., Yoshikawa, T., & Furuhashi, T. (2005). Division method of subjects by individuality for stratified analysis of SD evaluation data. IEEE International Symposium on Micro-NanoMechatronics and Human Science. 29-34