簡易檢索 / 詳目顯示

研究生: 黃浩俊
Huang, Hao-Chun
論文名稱: 氫結構和濃度引致的石墨烯電子性質
Configuration- and Concentration-Dependent Electronic Properties of Hydrogenated Graphene
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 30
中文關鍵詞: 石墨烯氫化石墨烯石墨烷第一原理
外文關鍵詞: graphene, hydrogenated graphene, graphane, first principle
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以第一原理計算研究氫化石墨烯的電子性質,結果顯示氫化石墨烯的幾何結構、能帶、電荷分佈和態密度與氫化的結構和濃度有強烈相關。這裡使用三種最佳化週期性結構,其中只有鋸齒形系統可以因氫原子的吸附而顯著地調製能隙大小,並存在中能隙半導體、窄能隙半導體、和無能隙系統這三種類型。此處能帶亦展現出豐富的性質,包括狄拉克錐的破壞與恢復、新形成的臨界點、弱色散關係能帶、和與碳-氫相關的部分扁平能帶。這些都能和軌道投影態密度的低能顯著峰、狄拉克δ函数近似峰、不連續肩狀結構、和對數發散峰互為印證。同時,態密度和空間電荷分佈清楚地指出碳-碳和碳-氫之間關鍵的鍵結是這些多樣化特性的成因。

    The electronic properties of hydrogenated graphenes are investigated with the first-principles calculations. Geometric structures, energy bands, charge distributions, and density of states (DOS) strongly depend on the different configurations and concentrations of hydrogen adatoms. Among three types of optimized periodical configurations, only in the zigzag systems the band gaps can be remarkably modulated by H-concentrations. There exist middle-gap semiconductors, narrow-gap semiconductors, and gapless systems. The band structures exhibit the rich features, including the destruction or recovery of the Dirac-cone structure, newly formed critical points, weakly dispersive bands, and (C,H)-related partially flat bands. The orbital-projected DOS are evidenced by the low-energy prominent peaks, delta-function-like peaks, discontinuous shoulders, and logarithmically divergent peaks. The DOS and spatial charge distributions clearly indicate that the critical bondings in C–C and C–H is responsible for the diversified properties.

    1. Introduction - 1 - 2. Methods - 4 - 3. Results and Discussion - 5 - 3.1 Geometric Structures - 5 - 3.2 Band Structures - 12 - 3.3 Charge Analysis - 18 - 3.4 Density of States - 22 - 4. Conclusion - 25 - 5. References - 27 -

    [1] K.S. Novoselov, A.K. Geim, et al., "Two-dimensional gas of massless Dirac fermions in graphene". Nature 438, 7065(197-200) (2005).
    [2] F. Schedin, A.K. Geim, et al., "Detection of individual gas molecules adsorbed on graphene". Nat Mater 6, 9(652-655) (2007).
    [3] A.K. Geim, "Graphene: status and prospects". Science 324, 5934(1530-1534) (2009).
    [4] C. Berger, Z. Song, et al., "Electronic confinement and coherence in patterned epitaxial graphene". Science 312, 5777(1191-1196) (2006).
    [5] A.A. Balandin, S. Ghosh, et al., "Superior thermal conductivity of single-layer graphene". Nano Lett 8, 3(902-907) (2008).
    [6] C. Lee, X. Wei, et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene". Science 321, 5887(385-388) (2008).
    [7] C.L. Lu, C.P. Chang, et al., "Influence of an electric field on the optical properties of few-layer graphene with AB stacking". Phys Rev B 73, 14 (2006).
    [8] Y.H. Ho, Y.H. Chiu, et al., "Magneto-optical Selection Rules in Bilayer Bernal Graphene". ACS Nano 4, 3(1465-1472) (2010).
    [9] Y.C. Huang, C.P. Chang, et al., "Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons". Nanotechnology 18, 49(495401) (2007).
    [10] H. Liu, Y. Liu, et al., "Chemical doping of graphene". J. Mater. Chem. 21, 10(3335-3345) (2011).
    [11] D. Wei, Y. Liu, et al., "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties". Nano Lett 9, 5(1752-1758) (2009).
    [12] F. Joucken, Y. Tison, et al., "Charge transfer and electronic doping in nitrogen-doped graphene". Sci Rep 5, (14564) (2015).
    [13] P. Sutter, M.S. Hybertsen, et al., "Electronic structure of few-layer epitaxial graphene on Ru(0001)". Nano Lett 9, 7(2654-2660) (2009).
    [14] P. Lauffer, K.V. Emtsev, et al., "Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy". Phys Rev B 77, 15 (2008).
    [15] C.Y. Lin, J.Y. Wu, et al., "Magneto-electronic properties of multilayer graphenes". Phys Chem Chem Phys 17, 39(26008-26035) (2015).
    [16] Y.H. Lai, J.H. Ho, et al., "Magnetoelectronic properties of bilayer Bernal graphene". Phys Rev B 77, 8 (2008).
    [17] X.L. Zhong, R. Pandey, et al., "Stacking dependent electronic structure and transport in bilayer graphene nanoribbons". Carbon 50, 3(784-790) (2012).
    [18] N.T.T. Tran, S.Y. Lin, et al., "Configuration-Induced Rich Electronic Properties of Bilayer Graphene". J Phys Chem C 119, 19(10623-10630) (2015).
    [19] J.H. Ho, C.L. Lu, et al., "Coulomb excitations in AA- and AB-stacked bilayer graphites". Phys Rev B 74, 8 (2006).
    [20] S.L. Chang, B.R. Wu, et al., "Configuration-dependent geometric and electronic properties of bilayer graphene nanoribbons". Carbon 77, (1031-1039) (2014).
    [21] H.C. Chung, C.P. Chang, et al., "Electronic and optical properties of graphene nanoribbons in external fields". Phys Chem Chem Phys 18, 11(7573-7616) (2016).
    [22] J.Y. Wu, S.C. Chen, et al., "Plasma Excitations in Graphene: Their Spectral Intensity and Temperature Dependence in Magnetic Field". Acs Nano 5, 2(1026-1032) (2011).
    [23] J.H. Wong, B.R. Wu, et al., "Strain Effect on the Electronic Properties of Single Layer and Bilayer Graphene". J Phys Chem C 116, 14(8271-8277) (2012).
    [24] V.M. Pereira, and A.H. Castro Neto, "Strain engineering of graphene's electronic structure". Phys Rev Lett 103, 4(046801) (2009).
    [25] S.Y. Lin, S.L. Chang, et al., "Feature-rich electronic properties in graphene ripples". Carbon 86, (207-216) (2015).
    [26] J.O. Sofo, A.S. Chaudhari, et al., "Graphane: A two-dimensional hydrocarbon". Phys Rev B 75, 15 (2007).
    [27] R. Balog, B. Jorgensen, et al., "Bandgap opening in graphene induced by patterned hydrogen adsorption". Nat Mater 9, 4(315-319) (2010).
    [28] P. Sessi, J.R. Guest, et al., "Patterning Graphene at the Nanometer Scale via Hydrogen Desorption". Nano Letters 9, 12(4343-4347) (2009).
    [29] D.C. Elias, R.R. Nair, et al., "Control of graphene's properties by reversible hydrogenation: evidence for graphane". Science 323, 5914(610-613) (2009).
    [30] M. Jaiswal, C.H. Lim, et al., "Controlled hydrogenation of graphene sheets and nanoribbons". ACS Nano 5, 2(888-896) (2011).
    [31] A. Castellanos-Gomez, M. Wojtaszek, et al., "Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy". Small 8, 10(1607-1613) (2012).
    [32] P. Chandrachud, B.S. Pujari, et al., "A systematic study of electronic structure from graphene to graphane". J Phys Condens Matter 22, 46(465502) (2010).
    [33] M. Yang, A. Nurbawono, et al., "Two-dimensional graphene superlattice made with partial hydrogenation". Appl Phys Lett 96, 19 (2010).
    [34] H.L. Gao, L. Wang, et al., "Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence". J Phys Chem C 115, 8(3236-3242) (2011).
    [35] G. Kresse, and J. Furthmuller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set". Phys Rev B 54, 16(11169-11186) (1996).
    [36] G. Kresse, and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method". Phys Rev B 59, 3(1758-1775) (1999).
    [37] J.P. Perdew, K. Burke, et al., "Generalized Gradient Approximation Made Simple". Phys Rev Lett 77, 18(3865-3868) (1996).
    [38] P.E. Blöchl, "Projector augmented-wave method". Phys Rev B 50, 24(17953-17979) (1994).
    [39] A.L. Vazquez de Parga, F. Calleja, et al., "Periodically rippled graphene: growth and spatially resolved electronic structure". Phys Rev Lett 100, 5(056807) (2008).
    [40] J. Cervenka, M.I. Katsnelson, et al., "Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects". Nat Phys 5, 11(840-844) (2009).
    [41] P. Ruffieux, J. Cai, et al., "Electronic structure of atomically precise graphene nanoribbons". ACS Nano 6, 8(6930-6935) (2012).
    [42] J.W.G. Wilder, L.C. Venema, et al., "Electronic structure of atomically resolved carbon nanotubes". Nature 391, 6662(59-62) (1998).
    [43] T. Kondo, S. Casolo, et al., "Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms". Phys Rev B 86, 3 (2012).
    [44] C.G. Tao, L.Y. Jiao, et al., "Spatially resolving edge states of chiral graphene nanoribbons". Nat Phys 7, 8(616-620) (2011).
    [45] T. Ohta, F. El Gabaly, et al., "Morphology of graphene thin film growth on SiC(0001)". New J Phys 10, (2008).
    [46] T. Ohta, A. Bostwick, et al., "Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy". Phys Rev Lett 98, 20(206802) (2007).
    [47] T. Ohta, A. Bostwick, et al., "Controlling the electronic structure of bilayer graphene". Science 313, 5789(951-954) (2006).
    [48] S.Y. Zhou, G.H. Gweon, et al., "Substrate-induced bandgap opening in epitaxial graphene". Nat Mater 6, 10(770-775) (2007).
    [49] S.Y. Zhou, D.A. Siegel, et al., "Metal to insulator transition in epitaxial graphene induced by molecular doping". Phys Rev Lett 101, 8(086402) (2008).
    [50] K. Schulte, N.A. Vinogradov, et al., "Bandgap formation in graphene on Ir(111) through oxidation". Appl Surf Sci 267, (74-76) (2013).
    [51] M. Papagno, S. Rusponi, et al., "Large Band Gap Opening between Graphene Dirac Cones Induced by Na Adsorption onto an Ir Superlattice". Acs Nano 6, 1(199-204) (2012).
    [52] S.Y. Lin, S.L. Chang, et al., "H-Si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration". Phys Chem Chem Phys 17, 39(26443-26450) (2015).
    [53] M. Gyamfi, T. Eelbo, et al., "Fe adatoms on graphene/Ru(0001): Adsorption site and local electronic properties". Phys Rev B 84, 11 (2011).
    [54] H. Huang, D. Wei, et al., "Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons". Sci Rep 2, (983) (2012).
    [55] J. Choi, H. Lee, et al., "Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy". J Phys Chem C 114, 31(13344-13348) (2010).
    [56] L. Tapaszto, G. Dobrik, et al., "Tuning the electronic structure of graphene by ion irradiation". Phys Rev B 78, 23 (2008).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE