簡易檢索 / 詳目顯示

研究生: 郭家銘
Kuo, Chia-Ming
論文名稱: 分析伏地挺身之速度對上肢關節的影響
Analysis for Different Push-Up Speed on Joint Loading of the Upper Extremity
指導教授: 周有禮
Chou, You-Li
林瑞模
Lin, Rui-Mo
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 69
中文關鍵詞: 肌肉活化肌電訊號關節受力矩關節受力上肢伏地挺身
外文關鍵詞: electromyography, muscle activation, upper extremity, push-up, joint moment, joint force
相關次數: 點閱:101下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於生活品質提高,使得休閒運動的風潮盛行,利用伏地挺身運動來鍛鍊身體是很常見的。回顧前人文獻,發現在改變身體姿態來做伏地挺身的研究上已做過詳細探討,此外速度因子也是一個重要的因素,故本實驗目的就是接續分析不同伏地挺身的速度對上肢肌肉骨骼系統的影響。
    透過非侵入式的動態分析系統來模擬上肢各關節在不同伏地挺身速度下時所承受的負載情形,以及量測上肢肌肉的表面肌電訊號
    ,希望了解不同伏地挺身的速度對於上肢肌肉的訓練成效和提供各關節在動態負載下預防受傷的機制。
    設計在三種不同頻率速度(快:1~1.5s、中:1.5~2s、慢:2~2.5s)下做伏地挺身動作,針對14位健康且慣用手為右手的年輕男性,計算出腕、肘、肩關節在做伏地挺身時的受力與受力矩,以及同步量測胸大肌、前中後三角肌、三頭肌、肱二頭肌、脊上肌、脊下肌的肌肉活化。
    實驗結果發現,在關節受力與關節受力矩方面:各關節的最大受力與受力矩發生在“Down”狀態附近;且快速組明顯不同中、慢速組的變化模式,速度越快數值越大。 在“Up”狀態下的各關節的初始受力與受力矩也受速度因子影響。在各肌肉活化情形:發現在起身過程中肌肉是較活化的狀態;以總活化值來比較下,快速組與中速組是差不多的,但慢速組有明顯地較大訓練程度,尤其在放慢速度的訓練下對胸大肌、前後三角肌、三頭肌、肱二頭肌有加強訓練的效果。基於以上的結果,快速組的關節受力大、肌肉訓練成效小,但節省時間。中速組的關節受力小,但肌肉訓練成效也小。慢速組的關節受力小、各肌肉訓練成效大是最佳選擇。

    Objectives. It’s an important factor to change the speed of push-up for upper extremity of musculo-skeletal-system. The objectives of study are to analysis joint force, moment and muscle activity of wrist, elbow, shoulder during different speed of push-up.
    Methods. Using the motion analysis system, the kinematics and kinetics of the upper extremity joint were investigated and using the surface EMG, the muscle activity was measured under various speed of push-up.
    Design. There are 13 Subjects of male. Subjects were asked to perform smooth push-up exercise in various speed group (faster:1~1.5s, regular:1.5~2s, slower:2~2.5s). The muscle activation was measured on the pectoralis major,deltoid,triceps,biceps brachii, supraspinatus, infraspinatus.
    Results. The various speed of push-up affects significantly axial force, medial/lateral force and flexion/extension moment of the upper extremity joint. The muscle training is efficient in the condition of slower speed during push-up on petcoralis major, triceps, biceps brachii, and deltoid anterior, deltoid posterior.
    Conclusions. During the long time, the training is good for preventing harm, and the muscles have better training results in the condition of slower speed.

    內文目錄 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 5 第二章 理論與分析方法 7 2-1 運動學與動力之理論方法 7 2-2 實驗假設 10 2-3 座標系的訂定 10 2-3-1 反光球標記方式 10 2-3-2 關節中心求法 12 2-3-3 生物力學模式座標系 14 2-3-4 測力板座標系和實驗室座標系間之關係 18 2-4 生物力學模式在空間中運動的描述與分析 18 2-4-1 旋轉矩陣與關節夾角 20 2-4-2 動力學公式推導 22 2-4-3 角速度與角加速度之計算 25 2-5 運動學及動力學的流程 27 2-5-1 運動學計算流程 28 2-5-2 動力學計算流程 29 2-5-3 肌電訊號之實驗設計 30 第三章 實驗設備與實驗設計 32 3-1 實驗設備 32 3-1-1 硬體 32 3-1-2 軟體 33 3-2 實驗設計 33 3-2-1 受測者 34 3-2-2 實驗姿勢 34 3-2-3 實驗流程 34 3-3 資料處理 35 3-3-1 資料收集 35 3-3-2 資料處理 35 3-3-3 統計分析 36 第四章 結果數據 37 4-1 實驗結果 37 4-2 腕關節 38 4-2-1 腕關節所受作用力變化 38 4-2-2 腕關節所受力矩變化 40 4-3 肘關節 42 4-3-1 肘關節所受作用力變化 42 4-3-2 肘關節所受力矩變化 44 4-4 肩關節 46 4-4-1 肩關節所受作用力變化 46 4-4-2 肩關節所受力矩變化 48 4-5 關節瞬間的功率 50 4-6 肌肉的肌電訊號 52 第五章 討論與結論 54 5-1 討論 54 5-1-1 關節受力 55 5-1-2 關節力矩 59 5-1-2 各關節的總功 63 5-1-4 各肌肉的肌電訊號 64 5-2 結論 65 5-3 實驗檢討 67 5-4 未來展望 67 參考文獻 68

    1. Lou SZ. Lin CJ. Chou PH. Chou YL. Huang GF. Elbow Loading during pushup at various forearm rotation. Clinical Biomechanics. 16(5):408-14, 2001.
    2.Chou P.H., Chou Y.L., Lin C.J., Shi Y.C., Huang G.F., Su F.C.,Wu T.C., Biomechanical Analyses for the Effects of Elbow Initial Flexion Angleson Upper Extremity during A Fall. in Proceeding of 25th National Conference on Theoretical and Applied Mechanics. K-1; 2001
    3.Dupont L. Gamet D. Perot C. Motor unit recruitment and EMG power spectra during ramp contractions of a bifunctional muscle. Journal of Electromyography & Kinesiology. 10(4):217-24, 2000.
    4.Murray WM, Buchanan TS, Delp SL. The isometric functional capacity of muscles that cross the elbow. Journal of Biomechanics. 33(8): 943-52, 2000.
    5.Park MC. Belhaj-Saif A. Cheney PD. Chronic recording of EMG activity from large numbers of forelimb muscles in awake macaque monkeys. Journal of Neuroscience Methods. 96(2):153-60, 2000.
    6.Micera S. Sabatini AM. Dario P. Rossi B. A hybrid approach to EMG pattern analysis for classification of arm movements using statistical and fuzzy techniques. Medical Engineering & Physics. 21(5):303-11, 1999.
    7.Chou Y.L., Chou P.H., Lin C.J., Lin C.F., Lou S.Z., The Biomechanical Analysis of Impact Forces of Upper Extremity on a Fall. in Proceeding of Annual Symposium of Formosan Biomechanics Socity. K-3-1 - K-3-2; 1999.
    8.Christova P. Kossev A. Kristev I. Chichov V. Surface EMG recorded by branched electrodes during sustained muscle activity. Journal of Electromyography & Kinesiology. 9(4):263-76, 1999.
    9.Osu R. Gomi H. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. Journal of Neurophysiology. 81(4):1458-68, 1999.
    10.Sporrong H. Palmerud G. Kadefors R. Herberts P. The effect of light manual precision work on shoulder muscles--an EMG analysis. Journal of Electromyography & Kinesiology. 8(3):177-84, 1998.
    11.Chiu J., Robinovitch S.N., Prediction of upper extremity impact forces during falls on the outstretched hand. Journal of Biomechanics. 31(12): 1169-76, 1998.
    12.Yamanouchi T. EMG analysis of the lower extremities during pitching in high-school baseball. Kurume Medical Journal. 45(1):21-5, 1998.
    13.Gupta V. Suryanarayanan S. Reddy NP. Fractal analysis of surface EMG signals from the biceps. International Journal of Medical Informatics. 45(3):185-92, 1997.
    14.Mouze-Amady M. Horwat F. Evaluation of Hjorth parameters in forearm surface EMG analysis during an occupational repetitive task. Electroencephalography & Clinical Neurophysiology. 101(2):181-3, 1996.
    15.Rosenfield M. Cohen AS. Push-up amplitude of accommodation and target size. Ophthalmic & Physiological Optics. 15(3):231-2, 1995.
    16.Murray WM, Delp SL, Buchanan TS. Variation of muscle moment arms with elbow and forearm position. Journal of Biomechanics. 28(5): 513-25, 1995.
    17.Mikawa Y. Watanabe R. Fuse K. Quadriplegia caused by push-up exercises. Archives of Orthopaedic & Trauma Surgery. 113(3):174-5, 1994.
    18.Mehrotra R. Sahay KB. A power spectral study of surface EMG of muscles subjected to non-repetitive task. Electromyography & Clinical Neurophysiology. 34(5):265-74, 1994
    19.Bilodeau M. Arsenault AB. Gravel D. Bourbonnais D. EMG power spectrum of elbow extensors: a reliability study. Electromyography & Clinical Neurophysiology. 34(3):149-58, 1994.
    20.Donkers MJ. An KN.: Hand position affects elbow joint load during push-up. Journal of Biomechanics. 26(6):625-32, 1993.
    21.Winter DA. MacKinnon CD. Ruder GK. Wieman C. An integrated EMG/biomechanical model of upper body balance and posture during human gait. Progress in Brain Research. 97:359-67, 1993.
    22.Caldwell GE. Van Leemputte M. Elbow torques and EMG patterns of flexor muscles during different isometric tasks. Electromyography & Clinical Neurophysiology. 31(7):433-45, 1991
    23.An KN. Korinek SL. Kilpela T. Edis S. Kinematic and kinetic analysis of push-up exercise. Biomedical Sciences Instrumentation. 26:53-7, 1990.
    24.Funk DA, An KN, Morrey BF, Daube JR. Electromyographic analysis of muscles across the elbow joint. Journal of Orthopaedic Research. 5(4): 529-38, 1987

    下載圖示 校內:立即公開
    校外:2002-08-09公開
    QR CODE