簡易檢索 / 詳目顯示

研究生: 王超鴻
Wang, Chao-hung
論文名稱: 硫化鋅奈米線光電性質之研究
Optical and Electrical Properties of Zinc Sulfide Nanowires
指導教授: 劉全璞
Liu, Chuan-pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 79
中文關鍵詞: 雙粒子束聚焦式離子束顯微切割儀奈米線元件硫化鋅奈米線化學氣相沉積法
外文關鍵詞: CVD, ZnS nanowires, DB-FIB, nanodevices
相關次數: 點閱:57下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,利用化學氣相沉積法成長不同結構之硫化鋅奈米線,並研究其陰極激發發光光譜(CL),以及電性表現,最後組裝成奈米線電晶體。從結構開始,硫化鋅奈米線包含了兩種結構,一為Zincblende結構,另一為Wurtzite結構,由TEM影像及電子繞射圖可以清楚了解,Zincblende結構中含有雙晶結構(Twin),其雙晶面為(111)面,成長方向沿著[111]方向,雙晶面兩側結晶面與雙晶面各呈現70.5∘的夾角,而Wurtzite結構中,奈米線沿著[0002]方向成長,為純單晶結構。由陰極激發發光光譜(CL)中,Zincblende結構主要的缺陷發光中心為自由載子在表面的缺陷能態(surface states)、自我激發的硫缺陷或是間隙晶格缺陷及與參雜元素相關之缺陷,而Wurtzite結構則有高缺陷密度與低缺陷密度,高缺陷密度主要缺陷發光中心的來源為硫的空缺、自我激發的硫缺陷或是間隙晶格缺陷及與參雜元素相關之缺陷,低缺陷密度則是以自由載子在表面缺陷能態及自我激發的硫缺陷或間隙晶格缺陷為主要發光中心。
    奈米線元件是由FIB蒸鍍白金電極來製作,並經由快速退火300℃可以明顯改善電極品質及接觸性質;另外經由兩點與四點量測,我們可以萃取出奈米線本質的電阻率為0.302Ω-cm,接觸電阻率為0.032Ω-cm2,由四點量測可以完全避免接觸電阻對奈米線的影響。在低溫電性方面,呈現半導體性的Zincblende結構與Wurtzite結構,其個別的活化能為44.3meV及36meV,且在極低溫下(~2K),導電性均呈現絕緣體,而在呈現金屬性的Wurtzite結構,其缺陷密度較高。在三點量測上,我們採取側向閘極與上閘極的方式來製作奈米線電晶體,由側向閘極與上閘極的比較,側向閘極下,奈米線為電洞(p-type)傳導;相較於上閘極,導電型態為硫化鋅奈米線常見的電子(n-type)導電。

    In this research, Zinc Sulfide nanowires can be fabricated by conventional CVD process. The structures, CL emission spectrums and electrical properties of ZnS nanowires have been studied. Starting from the structures, two kinds of structures have been found in our results. One is Zincblende structure. The other one is Wurtzite structure. The Zincblende structure which contained lots of (111) twin planes with the nanowires growth direction in [111] direction and 70.5∘ twin plane angle can easily observed in TEM. The Wurtzite structure is a single crystalline structure which also can be confirmed by TEM analysis. In the CL spectrum, the defect emission centers in Zincblende structure are originated from surfaces states at nanowires surfaces, self-activated sulfur defects and impurity-related emission. As for Wurtzite structure, the defect emission centers in high defect density nanowires are originated from sulfur vacancy, self-activated sulfur defects and impurity-related emission. However, the defect emission centers in low defect density nanowires are originated from surface states and self-activated sulfur defects.
    The nanodevices are fabricated by using FIB techniques. By further annealing process, the nanowires conductance could be enhanced because of the improvement of the Pt electrodes and contact properties. The two and four point measurement shows the nanowires resistivity is around 0.302Ω-cm and the contact resistivity is around 0.032Ω-cm2. In the temperature dependent resistance, both the Zincblende and Wurtzite structures show semiconductor behavior. Fitting the R-T plot by Arrhenius equation, we can obtain the activation energy. (44.3meV for Zincblende and 36meV for Wurtzite) At extremely low temperature region (~2K), the conduction types of Zincblende and Wurtzite structures both show insulator behavior. Also, the Wurtzite structure with the high defect density shows metallic behavior. In the 3-point measurement (gate structure), we fabricated the gate by using side gate and top gate. In the side gate structure, the nanowire conduction type is p-type. However, in the top gate structure, the nanowire conduction type is n-type.

    中文摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 簡介與研究目的 1 1.1一維奈米材料簡介 1 1.2一維奈米元件 1 1.2.1奈米線太陽能電池 1 1.2.2奈米線偵測器 2 1.2.3奈米線發光元件 2 1.2.4奈米線電晶體 3 1.3硫化鋅的基礎性質和應用 7 1.4硫化鋅奈米材料合成方法與成長機制 8 1.5硫化鋅奈米材料元件 9 第二章 理論基礎 10 2.1接觸電阻(Contact resistance) 10 2.2兩點與四點量測(2-point and 4-point measurement) 12 2.3歐姆性接觸(Ohmic contact) 13 2.4蕭特基接觸(Schottky contact) 15 2.5金屬-半導體-金屬模型(Metal-Semiconductor-Metal model) 17 2.6蕭特基整流特性曲線萃取蕭基能障 19 2.7半導體材料低溫下載子傳導機制 20 2.8由電流電壓對閘極偏壓變化萃取奈米線本質特性參數 25 第三章 實驗方法與分析 28 3.1實驗流程圖 28 3.2實驗方法及步驟 29 3.3實驗分析 31 3.3.1掃瞄式電子顯微鏡 31 3.3.2穿透式電子顯微鏡 34 3.4實驗量測 36 3.4.1以黃光微影蝕刻製程製作電極 36 3.4.2以雙粒子束聚焦式離子束製作電極 37 3.4.3電性量測分析系統 38 第四章 結果與討論 40 4.1硫化鋅奈米線表面形貌與結構 40 4.1.1 SEM表面形貌觀測 41 4.1.2 TEM結構觀測 42 4.2硫化鋅奈米線光性分析 46 4.3硫化鋅奈米線電性分析 50 4.3.1常溫I-V曲線 50 4.3.2低溫電性分析 61 4.3.3三點量測法(Gate structure) 67 第五章 結論 74 第六章 參考文獻 77

    [1] http://cmliris.harvard.edu/.
    [2] B. Tian, T. J. Kempa, and C. M. Lieber, Chemical Society Reviews 38, 16 (2009).
    [3] E. C. Garnett, and P. Yang, Journal of the American Chemical Society 130, 9224 (2008).
    [4] Y. B. Tang et al., Nano Letters 8, 4191 (2008).
    [5] C. Soci et al., Nano Letters 7, 1003 (2007).
    [6] R.-S. Chen et al., Applied Physics Letters 91, 223106 (2007).
    [7] J. H. He et al., J. Phys. Chem. C 111, 12152 (2007).
    [8] Z. Z. L Liao, B Yan, Z Zheng, Q L Bao, T Wu, C M Li, Z X Shen, J X Zhang, H Gong, J C Li, and T. Yu, Nanotechnology 20, 085203 (2009).
    [9] Y. H. a. C. M. Lieber, Pure and Applied Chemistry 76 (2004).
    [10] F. Qian et al., Nat Mater 7, 701 (2008).
    [11] A. Motayed et al., Applied Physics Letters 90, 043104 (2007).
    [12] C. Pai-Chun, and L. Jia Grace, Electron Devices, IEEE Transactions on 55, 2977 (2008).
    [13] B. Xiang et al., Nano Letters 7, 323 (2007).
    [14] R. S. Friedman et al., Nature 434, 1085 (2005).
    [15] A. H. Kitai, Solid State Luminescence (CHAPMAN & HALL, London, U.K., 1993).
    [16] K. Sooklal, Journal of Physical Chemistry 100, 4551 (1996).
    [17] O. Madelung, Semiconductors: Data Handbook (Springer, 2003).
    [18] Y. Y. S. Nakamura, and T. Taguchi, J. Cryst. Growth 214, 1091 (2000).
    [19] 蔡有仁, 遠東學報 20, 405 (2003).
    [20] U. K. Gautam, Adv. Mater. 20, 810 (2008).
    [21] S. Kishimoto, in 10th International Conference on II-VI CompoundsBremenGermany, 2001), p. 391.
    [22] T. V. Butkhuzi, in 10th International Conference on II-VI CompoundsBremenGermany, 2001), p. 365.
    [23] K. Lott, in 10th International Conference on II-VI CompoundsBremenGermany, 2001), p. 361.
    [24] S. Nakamura, in 13th International Conference on Crystal Growth held in conjunction with the 11th International Conference on Vapor Growth and EpitaxyKyotoJapan, 2001), p. 1570.
    [25] S. Kohiki, Journal of Applied Physics 91, 760 (2002).
    [26] Y. Cui, Science 293, 1289 (2001).
    [27] S. S. Wong, Nature 394, 52 (1998).
    [28] J. Kong, Science 287, 622 (2000).
    [29] a. W. C. E. R. S. Wagner, Applied Physics Letters 4 (1964).
    [30] a. C. M. L. P. D. Yang, Science 273, 1836 (1996).
    [31] W. T. Yao, Small 1, 320 (2005).
    [32] L. L. Chai, Journal of Physical Chemistry C 111, 12658 (2007).
    [33] X. S. Fang et al., J. Phys. Chem. C 112, 4735 (2008).
    [34] J. T. Hu, in International Conference on Luminescence and Optical Spectroscopy of Condensed MatterBeijing, 2006), p. 172.
    [35] a. S. C. S. Kar, Journal of Physical Chemistry B 109, 3298 (2005).
    [36] M. Lin, Chemical Physics Letters 400, 175 (2004).
    [37] X. S. Fang, Journal of Physical Chemistry C 111, 8469 (2007).
    [38] J. Zhang, Nanotechnology 17, 2695 (2006).
    [39] C. Ma, Adv. Mater. 15, 228 (2003).
    [40] Y. D. D. F. Moore, and Z. L. Wang, J. Am. Chem. Soc. 126, 14372 (2004).
    [41] X. Wu, Adv. Mater. 19, 2319 (2007).
    [42] X. S. Fang, Adv. Mater. 19, 2593 (2007).
    [43] S. Y. C. H. Y. Lu, and C. C. Chang, J. Cryst. Growth 280, 173 (2005).
    [44] H. W. W. P. C. Kuo, and S. Y. Chen, Journal of the Ceramic Society of Japan 114, 918 (2006).
    [45] Z. P. Li, in 3rd Asian Conference on High Pressure Research (ACHPR-3)Lijiang City, 2006).
    [46] G. Xi et al., J. Phys. Chem. C 112, 1946 (2008).
    [47] H. J. Xu, Journal of Materials Research 23, 121 (2008).
    [48] Y. K. Liu, Nanotechnology 18 (2007).
    [49] D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, Inc., 1990).
    [50] Y.-F. Lin, and W.-B. Jian, Nano Lett. (2008).
    [51] D. A. Neamen, Semiconductor Physics and Devices (McGRAW-HILL.
    [52] R. H. W. E. H. Rhoderick, Metal-Semiconductor Contact (Oxford, Clarendon, 1988).
    [53] K. Y. Z. Zhang, Y. Liu, C. Jin, X. Liang, Q. Chen, L.-M. Peng,, Advanced Functional Materials 17, 2478 (2007).
    [54] H. Norde, Journal of Applied Physics 50, 5052 (1979).
    [55] C. D. Lien, F. C. T. So, and M. A. Nicolet, Electron Devices, IEEE Transactions on 31, 1502 (1984).
    [56] A. L. E. B.I. Shklovskii, Electronic Properties of Doped Semiconductors (Springer-Verlag, 1984).
    [57] H. P. Myers, Introductory Solid State Physics (Taylor & Francis, London, 1997).
    [58] a. E. A. D. N. F. Mott, Electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1979).
    [59] http://140.116.176.21/www/index.htm,成功大學微奈米中心儀器使用手冊.
    [60] L. Reimer, Transmission electron microscopy :physics of image formation and microanalysis (Springer, New York :, 1997).
    [61] http://140.116.176.21/www/index.htm .
    [62] 國立中山大學物理系.
    [63] D. Denzler, M. Olschewski, and K. Sattler, Journal of Applied Physics 84, 2841 (1998).
    [64] Q. Xiong et al., Nano Letters 4, 1663 (2004).
    [65] A. Datta, S. K. Panda, and S. Chaudhuri, Journal of Solid State Chemistry 181, 2332 (2008).
    [66] S. Kar, and S. Biswas, The Journal of Physical Chemistry C 112, 11144 (2008).
    [67] J. J. L. M. A Botman, R Weemaes, and S. Mentink, Nanotechnology 17, 3779 (2006).
    [68] C. Y. Nam, D. Tham, and J. E. Fischer, Nano Lett. 5, 2029 (2005).
    [69] J. C. Rivière, Solid State Surface Science 1 (1969).
    [70] J. H. a. F. K. Schulte, Springer Tracts in Modern Physics 85 (1979).
    [71] Y. M. Oh et al., Nano Letters 7, 3681 (2007).
    [72] D. P. A. Shadi. Dayeh, Xiaotian Zhou, Paul K. Yu, Edward Yu, Deli Wang, Small 3, 326 (2007).
    [73] T. Hanrath, and B. A. Korgel, The Journal of Physical Chemistry B 109, 5518 (2005).
    [74] X. Yang, C. Xu, and N. C. Giles, Journal of Applied Physics 104, 073727 (2008).

    無法下載圖示 校內:2014-07-24公開
    校外:2059-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE