簡易檢索 / 詳目顯示

研究生: 林楷舜
Lin, Kai-Shun
論文名稱: 電漿輔助化學氣相沉積法在低溫下成長大面積二碲化鎳奈米片用於電化學分解水
Wafer-Scale Growth of NiTe2 Nanosheets on Nickle Foam Substrate by a Low-Temperature Plasma-Assisted Tellurization Process for Overall Water Splitting
指導教授: 陳雨澤
Chen, Yu-Ze
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: NiTe2化學氣相沉積法電漿HEROER
外文關鍵詞: Nickel Ditelluride, chemical vapor deposition, plasma, HER, OER
相關次數: 點閱:89下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學水裂解反應被視為最有效生成氫氣的方式,而資源稀少且昂貴的貴金屬催化劑成為其實際應用上最大的阻礙。過渡金屬二硫化物(TMDC)因其獨特的層狀結構、豐富的資源和優異的性能而成為廣泛應用於產氫(HER)和產氧反應(OER)的材料之一。本實驗透過在垂直式爐管中進行電漿輔助化學氣相沉積法(PECVD),成功在發泡鎳基板上合成了大量超薄NiTe2奈米片,藉由改變製程溫度、氣流、電漿等參數,能夠對發泡鎳表面結構進行控制,從而生成NiTe2奈米花、奈米片、奈米顆粒等不同形貌,也導致不同的HER及OER性能。除此之外,電漿輔助製程下NiTe2可以在最低200°C下合成奈米片,並增強NiTe2奈米片在HER與OER之循環穩定性,最後,NiTe2奈米片能夠均勻沉積在直徑10 cm之發泡鎳基板上。本實驗藉由電漿的幫助下同時達成降低製程溫度、增強奈米結構穩定性與擴大製程面積等效果,也為未來碲化物材料在市場上帶來更多的發展性。

    Water splitting is regarded as the most effective way to generate hydrogen, and the scarcity and costliness of the precious-metal catalysts have become the major challenge for practical applications. Herein, large-area ultra-thin NiTe2 nanosheets are successfully synthesized by the direct plasma-assisted tellurization of nickel foam via a chemical vapor deposition method. By varying the processing temperature, gas flow ratio, and plasma, we can control the morphology of NiTe2 nanostructure. The different morphology such as nanoflowers, nanosheets, and nanoparticles was synthesized, resulting in different electrocatalytic performance. In addition, the plasma-enhanced process can greatly decrease the processing temperature to 200°C, and enhance the stability of NiTe2 nanosheets in HER and OER. Finally, NiTe2 nanosheets can be synthesized uniformly in the diameter of 10 cm on the nickel foam substrate. In this work, plasma-enhanced process is used to reduce the synthesized temperature, enhance the stability of the nanostructure, and expand the synthesized area at the same time. It will paves a new pathway to the preparation of NiTe2-based electrocatalysts for improving water splitting performance.

    摘要 I Extended Abstract II 致謝 IX 目錄 X 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1前言 1 1.2研究動機 3 第二章 文獻回顧 5 2.1二維材料 5 2.1.1單元素二維材料 5 2.1.2過渡金屬二硫化物 9 2.2二維材料的製程方法 10 2.2.1剝離法 10 2.2.2溶劑熱法與水熱法 12 2.2.3化學氣相沉積法 14 2.2.4垂直式化學氣相沉積法 16 2.2.5電漿輔助化學氣相沉積法 18 2.3碲化鎳性質 21 2.3.1基本性質 21 2.3.2製程方式 21 2.3.3應用 26 2.4電化學水裂解 30 2.4.1產氫反應 30 2.4.2產氧反應 32 2.4.3 HER及OER反應的重要參數 33 第三章 實驗步驟 36 3.1實驗藥品 36 3.2 NiTe2奈米片成長步驟 36 3.2.1實驗流程圖 36 3.2.2清洗基材 37 3.2.3 NiTe2奈米片成長 37 3.2.4 HER及OER反應量測 39 3.3實驗儀器 40 3.3.1真空碲化系統 40 3.3.2場發射掃描式電子顯微鏡 40 3.3.3拉曼光譜儀 41 3.3.4 X射線光電子能譜儀 41 第四章 結果與討論 43 4.1 NiTe2基本性質 43 4.1.1 NiTe2奈米花之形貌 43 4.1.2 NiTe2奈米花之材料分析 46 4.2電漿下NiTe2奈米片之製程 48 4.2.1電漿對NiTe2奈米片形貌之影響 48 4.2.2電漿下NiTe2奈米片之材料分析 51 4.2.3不同功率電漿下NiTe2奈米片形貌之影響 53 4.3 NiTe2製程參數探討-製程溫度 55 4.3.1無電漿製程之溫度探討 55 4.3.2電漿輔助製程之溫度探討 56 4.4 NiTe2製程參數探討-製程氣流與時間 57 4.4.1不同製程氣流流量比例對NiTe2之影響 57 4.4.2不同製程時間對NiTe2之影響 59 4.5 NiTe2之HER性能 61 4.5.1探討製程溫度對HER性能之影響 61 4.5.2探討製程氣流對HER性能之影響 63 4.5.3 NiTe2奈米花與奈米片之HER性能差異 65 4.5.4 HER循環性能探討 68 4.6 NiTe2之OER性能 71 4.6.1探討製程溫度對OER性能之影響 71 4.6.2探討製程氣流對OER性能之影響 73 4.6.3 NiTe2奈米花與奈米片之OER性能差異 75 4.6.4 OER之循環性能 78 4.6.5 NiTe2/NiFe-LDH之OER性能 80 4.7 NiTe2大面積成長製程 82 4.7.1無電漿製程下大面積成長NiTe2奈米花 82 4.7.2電漿輔助製程下大面積成長NiTe2奈米片 83 第五章 結論 84 第六章、未來工作與展望 86 參考文獻 87

    1. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nat. Photonics, 8 (7), 506-514, 2014.
    2. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G., Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev., 110 (11), 6474-6502, 2010.
    3. Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R., Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev., 116 (6), 3594-3657, 2016.
    4. Debe, M. K., Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (7401), 43-51, 2012.
    5. Roger, I.; Shipman, M. A.; Symes, M. D., Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem., 1 (1), 1-13, 2017.
    6. Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J.; Guan, M.; Lin, M.-C.; Zhang, B.; Hu, Y.; Wang, D.-Y.; Yang, J., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun., 5 (1), 1-6, 2014.
    7. Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M., Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev., 38 (1), 89-99, 2009.
    8. Dresselhaus, M.; Thomas, I., Alternative energy technologies. Nature, 414 (6861), 332-337, 2001.
    9. Anantharaj, S.; Ede, S.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P.; Kundu, S., Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ. Sci., 11 (4), 744-771, 2018.
    10. Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P., Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc., 135 (35), 12932-12935, 2013.
    11. Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev., 44 (15), 5148-5180, 2015.
    12. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y., Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett., 3 (3), 399-404, 2012.
    13. Ping, Y.; Nielsen, R. J.; Goddard III, W. A., The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2 (110) surface. J. Am. Chem. Soc., 139 (1), 149-155, 2017.
    14. Zhao, B.; Dang, W.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z.; Wu, R.; Ma, H.; Sun, G., Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc., 140 (43), 14217-14223, 2018.
    15. Li, Y.; Tan, X.; Tan, H.; Ren, H.; Chen, S.; Yang, W.; Smith, S. C.; Zhao, C., Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution. Energy Environ. Sci., 13 (6), 1799-1807, 2020.
    16. Chen, Y.-Z.; Lee, S.-H.; Su, T.-Y.; Wu, S.-C.; Chen, P.-J.; Chueh, Y.-L., Phase-modulated 3D-hierarchical 1T/2H WSe2 nanoscrews by a plasma-assisted selenization process as high performance NO gas sensors with a ppb-level detection limit. J. Mater. Chem. A, 7 (39), 22314-22322, 2019.
    17. Medina, H.; Li, J.-G.; Su, T.-Y.; Lan, Y.-W.; Lee, S.-H.; Chen, C.-W.; Chen, Y.-Z.; Manikandan, A.; Tsai, S.-H.; Navabi, A., Wafer-Scale Growth of WSe2 Monolayers Toward Phase-Engineered Hybrid WOx/WSe2 Films with Sub-ppb NOx Gas Sensing by a Low-Temperature Plasma-Assisted Selenization Process. Chem. Mater., 29 (4), 1587-1598, 2017.
    18. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. science, 306 (5696), 666-669, 2004.
    19. Glavin, N. R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P. M., Emerging applications of elemental 2D materials. Adv. Mater., 32 (7), 1904302, 2020.
    20. Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys., 81 (1), 109, 2009.
    21. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321 (5887), 385-388, 2008.
    22. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Lett., 8 (3), 902-907, 2008.
    23. Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S., Two-and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett., 102 (23), 236804, 2009.
    24. Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M. H.; Akinwande, D., Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev., 47 (16), 6370-6387, 2018.
    25. Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P., Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem., 1 (2), 1-14, 2017.
    26. Liu, C.; Hu, T.; Wu, Y.; Gao, H.; Yang, Y.; Ren, W., 2D selenium allotropes from first principles and swarm intelligence. J. Phys.: Condens. Matter, 31 (23), 235702, 2019.
    27. Wang, Q.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z.; He, J., Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano, 8 (7), 7497-7505, 2014.
    28. Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W. A.; Kim, M. J.; Xu, X., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron., 1 (4), 228-236, 2018.
    29. Huang, X.; Guan, J.; Lin, Z.; Liu, B.; Xing, S.; Wang, W.; Guo, J., Epitaxial growth and band structure of Te film on graphene. Nano Lett., 17 (8), 4619-4623, 2017.
    30. Wang, C.; Zhou, X.; Qiao, J.; Zhou, L.; Kong, X.; Pan, Y.; Cheng, Z.; Chai, Y.; Ji, W., Charge-governed phase manipulation of few-layer tellurium. Nanoscale, 10 (47), 22263-22269, 2018.
    31. Liu, G.-B.; Xiao, D.; Yao, Y.; Xu, X.; Yao, W., Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev., 44 (9), 2643-2663, 2015.
    32. Bhanvase, B. A.; Pawade, V. B.; Dhoble, S. J.; Sonawane, S.; Ashokkumar, M., Nanomaterials for green energy. Elsevier, 2018.
    33. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S., Graphene based materials: past, present and future. Prog. Mater. Sci., 56 (8), 1178-1271, 2011.
    34. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N., Liquid exfoliation of layered materials. Science, 340 (6139) , 2013.
    35. Li, X.; Shan, J.; Zhang, W.; Su, S.; Yuwen, L.; Wang, L., Recent advances in synthesis and biomedical applications of two‐dimensional transition metal dichalcogenide nanosheets. Small, 13 (5), 1602660, 2017.
    36. Altavilla, C.; Sarno, M.; Ciambelli, P., A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@ oleylamine (M= Mo, W). Chem. Mater., 23 (17), 3879-3885, 2011.
    37. Cushing, B. L.; Kolesnichenko, V. L.; O'connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev., 104 (9), 3893-3946, 2004.
    38. Ramakrishna Matte, H.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C., MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed., 49 (24), 4059-4062, 2010.
    39. Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater., 25 (40), 5807-5813, 2013.
    40. Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z., Chemical vapour deposition. Nat. Rev. Methods Primers, 1 (1), 1-20, 2021.
    41. Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y., Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano, 7 (10), 8963-8971, 2013.
    42. Li, H.; Duan, X.; Wu, X.; Zhuang, X.; Zhou, H.; Zhang, Q.; Zhu, X.; Hu, W.; Ren, P.; Guo, P., Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc., 136 (10), 3756-3759, 2014.
    43. Ling, X.; Lee, Y.-H.; Lin, Y.; Fang, W.; Yu, L.; Dresselhaus, M. S.; Kong, J., Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett., 14 (2), 464-472, 2014.
    44. Tang, L.; Li, T.; Luo, Y.; Feng, S.; Cai, Z.; Zhang, H.; Liu, B.; Cheng, H.-M., Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano, 14 (4), 4646-4653, 2020.
    45. Vizireanu, S.; Stoica, S.; Luculescu, C.; Nistor, L.; Mitu, B.; Dinescu, G., Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma. Plasma Sources Sci. Technol., 19 (3), 034016, 2010.
    46. Hofmann, S.; Kleinsorge, B.; Ducati, C.; Ferrari, A.; Robertson, J., Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diamond. Relat. Mater., 13 (4-8), 1171-1176, 2004.
    47. Hofmann, S.; Kleinsorge, B.; Ducati, C.; Robertson, J., Controlled low-temperature growth of carbon nanofibres by plasma deposition. New J. Phys., 5 (1), 153, 2003.
    48. Bower, C.; Zhu, W.; Jin, S.; Zhou, O., Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett., 77 (6), 830-832, 2000.
    49. Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J., Low‐temperature synthesis of large‐scale molybdenum disulfide thin films directly on a plastic substrate using plasma‐enhanced chemical vapor deposition. Adv. Mater., 27 (35), 5223-5229, 2015.
    50. Anantharaj, S.; Kundu, S.; Noda, S., Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A, 8 (8), 4174-4192, 2020.
    51. Ghosh, B.; Mondal, D.; Kuo, C.-N.; Lue, C. S.; Nayak, J.; Fujii, J.; Vobornik, I.; Politano, A.; Agarwal, A., Low-energy type-II Dirac fermions and spin-polarized topological surface states in transition-metal dichalcogenide NiTe2. Phys. Rev. B, 100, 195134, 2019.
    52. Bensch, W.; Heid, W.; Muhler, M.; Jobic, S.; Brec, R.; Rouxel, J., Anionic polymeric bonds in nickel ditelluride: crystal structure, and experimental and theoretical band structure. J. Solid State Chem., 121 (1), 87-94, 1996.
    53. Guo, G.; Liang, W., Study of the electronic structures of Ni-group metal ditellurides: NiTe2, PdTe2 and PtTe2 by the self-consistent LMTO-ASA method. J. phys., C, Solid state phys., 19 (27), 5365, 1986.
    54. Binczycka, H.; Hafner, S.; Moh, G.; Stanek, J., Chemical bonding in MeTe2, Me= Mn, Fe, Co, Ni. Phys. Lett. A, 145 (8-9), 467-470, 1990.
    55. Li, B.; Xie, Y.; Huang, J.; Su, H.; Qian, Y., Solvothermal synthesis to NiE2 (E= Se, Te) nanorods at low temperature. Nanostruct. Mater., 11 (8), 1067-1071, 1999.
    56. Chia, X.; Sofer, Z.; Luxa, J.; Pumera, M., Unconventionally layered CoTe2 and NiTe2 as electrocatalysts for hydrogen evolution. Chem. Eur. J., 23 (48), 11719-11726, 2017.
    57. Ge, Y.; Gao, S.-P.; Dong, P.; Baines, R.; Ajayan, P. M.; Ye, M.; Shen, J., Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: activities related to non-metal ligands. Nanoscale, 9 (17), 5538-5544, 2017.
    58. Wang, Z.; Zhang, L., Nickel ditelluride nanosheet arrays: a highly efficient electrocatalyst for the oxygen evolution reaction. ChemElectroChem, 5 (8), 1153-1158, 2018.
    59. Lei, Y.-X.; Zhou, J.-P.; Wang, J.-Z.; Miao, N.-X.; Guo, Z.-Q.; Hassan, Q.-U., Novel magnetic properties of uniform NiTex nanorods selectively synthesized by hydrothermal method. Mater. Des., 117, 390-395, 2017.
    60. Lei, Y.-X.; Zhou, J.-P.; Hassan, Q. U.; Wang, J.-Z., One-step synthesis of NiTe2 nanorods coated with few-layers MoS2 for enhancing photocatalytic activity. Nanotechnology, 28 (49), 495602, 2017.
    61. Hu, L.; Zeng, X.; Wei, X.; Wang, H.; Wu, Y.; Gu, W.; Shi, L.; Zhu, C., Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal., B, 273, 119014, 2020.
    62. Zhou, L.; Zhang, X.; Zheng, D.; Xu, W.; Liu, J.; Lu, X., Ni3S2@ PANI core–shell nanosheets as a durable and high-energy binder-free cathode for aqueous rechargeable nickel–zinc batteries. J. Mater. Chem. A, 7 (17), 10629-10635, 2019.
    63. Anantharaj, S.; Karthick, K.; Kundu, S., NiTe2 nanowire outperforms Pt/C in high-rate hydrogen evolution at extreme pH conditions. Inorg. Chem., 57 (6), 3082-3096, 2018.
    64. Shi, J.; Huan, Y.; Xiao, M.; Hong, M.; Zhao, X.; Gao, Y.; Cui, F.; Yang, P.; Pennycook, S. J.; Zhao, J., Two-Dimensional Metallic NiTe2 with Ultrahigh Environmental Stability, Conductivity, and Electrocatalytic Activity. ACS Nano, 14 (7), 9011-9020, 2020.
    65. Zhai, X.; Xu, X.; Peng, J.; Jing, F.; Zhang, Q.; Liu, H.; Hu, Z., Enhanced optoelectronic performance of CVD-grown metal–semiconductor NiTe2/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 12 (21), 24093-24101, 2020.
    66. Bhat, K. S.; Barshilia, H. C.; Nagaraja, H., Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction. Int. J. Hydrog. Energy, 42 (39), 24645-24655, 2017.
    67. Sun, D.; Liu, S.; Zhang, G.; Zhou, J., NiTe2/N-doped graphitic carbon nanosheets derived from Ni-hexamine coordination frameworks for Na-ion storage. Chem. Eng. J., 359, 1659-1667, 2019.
    68. Sun, H.; Yang, J.-M.; Li, J.-G.; Li, Z.; Ao, X.; Liu, Y.-Z.; Zhang, Y.; Li, Y.; Wang, C.; Tang, J., Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Appl. Catal., B, 272, 118988, 2020.
    69. Sun, D.; Liu, K.; Hu, J.; Zhou, J., Antiblocking Heterostructure to Accelerate Kinetic Process for Na‐Ion Storage. Small, 17 (4), 2006374, 2021.
    70. Morales-Guio, C. G.; Stern, L.-A.; Hu, X., Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev., 43 (18), 6555-6569, 2014.
    71. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z., Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev., 44 (8), 2060-2086, 2015.
    72. Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev., 46 (2), 337-365, 2017.
    73. Bockris, J. M.; Potter, E., The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc., 99 (4), 169, 1952.
    74. Shi, Y.; Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev., 45 (6), 1529-1541, 2016.
    75. Baer, D. R.; Thevuthasan, S., Characterization of thin films and coatings. In Handbook of Deposition Technologies for Films and Coatings, Elsevier:; pp 749-864, 2010.
    76. Nappini, S.; Boukhvalov, D. W.; D'Olimpio, G.; Zhang, L.; Ghosh, B.; Kuo, C. N.; Zhu, H.; Cheng, J.; Nardone, M.; Ottaviano, L., Transition‐Metal Dichalcogenide NiTe2: An Ambient‐Stable Material for Catalysis and Nanoelectronics. Adv. Funct. Mater., 30 (22), 2000915, 2020.
    77. Dobson, K. D.; Rotlevi, O.; Rose, D.; Hodes, G., Formation and characterization of electroless-deposited NiTe2 back contacts to CdTe/CdS thin-film solar cells. J. Electrochem. Soc., 149 (2), G147, 2002.
    78. Yang, S.; Cai, H.; Chen, B.; Ko, C.; Özçelik, V. O.; Ogletree, D. F.; White, C. E.; Shen, Y.; Tongay, S., Environmental stability of 2D anisotropic tellurium containing nanomaterials: anisotropic to isotropic transition. Nanoscale, 9 (34), 12288-12294, 2017.
    79. Tian, T.; Huang, L.; Ai, L.; Jiang, J., Surface anion-rich NiS2 hollow microspheres derived from metal–organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A, 5 (39), 20985-20992, 2017.
    80. Jiang, N.; Tang, Q.; Sheng, M.; You, B.; Jiang, D.-e.; Sun, Y., Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol., 6 (4), 1077-1084, 2016.
    81. Zheng, X.; Han, X.; Liu, H.; Chen, J.; Fu, D.; Wang, J.; Zhong, C.; Deng, Y.; Hu, W., Controllable synthesis of NixSe (0.5≤ x≤ 1) nanocrystals for efficient rechargeable zinc–air batteries and water splitting. ACS Appl. Mater. Interfaces, 10 (16), 13675-13684, 2018.
    82. De Silva, U.; Masud, J.; Zhang, N.; Hong, Y.; Liyanage, W. P.; Zaeem, M. A.; Nath, M., Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. J. Mater. Chem. A, 6 (17), 7608-7622, 2018.
    83. Qin, Q.; Chen, L.; Wei, T.; Liu, X., MoS2/NiS yolk–shell microsphere‐based electrodes for overall water splitting and asymmetric supercapacitor. Small, 15 (29), 1803639, 2019.
    84. Luo, P.; Zhang, H.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C.; Hu, N.; Wang, Y., Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Appl. Mater. Interfaces, 9 (3), 2500-2508, 2017.
    85. Wang, Z.; Zhang, L., In situ growth of NiTe nanosheet film on nickel foam as electrocatalyst for oxygen evolution reaction. Electrochem. commun., 88, 29-33, 2018.
    86. Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 345 (6204), 1593-1596, 2014.
    87. Dinh, K. N.; Zheng, P.; Dai, Z.; Zhang, Y.; Dangol, R.; Zheng, Y.; Li, B.; Zong, Y.; Yan, Q., Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small, 14 (8), 1703257, 2018.
    88. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X., Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall‐water‐splitting activity. Angew. Chem., 128 (23), 6814-6819, 2016.
    89. Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S.; Zhuang, X.; Feng, X., Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci., 9 (2), 478-483, 2016.
    90. Sun, H.; Li, J.-G.; Lv, L.; Li, Z.; Ao, X.; Xu, C.; Xue, X.; Hong, G.; Wang, C., Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. J. Power Sources, 425, 138-146, 2019.
    91. Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B., Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater., 28 (14), 1706847, 2018.

    下載圖示 校內:2024-08-30公開
    校外:2024-08-30公開
    QR CODE