簡易檢索 / 詳目顯示

研究生: 韓宗佑
Han, Tsung-Yu
論文名稱: 探討mych(myelocytomatosis oncogene homolog)基因在斑馬魚早期胚胎發育體軸對稱之角色
The role of mych(myelocytomatosis oncogene homolog) gene on determining body asymmetries during early embryonic development in zebrafish
指導教授: 盧福翊
Lu, Fu-i
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: mych基因體軸發育Wnt訊息傳遞路徑
外文關鍵詞: mych, body axis, Wnt signaling pathway
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在斑馬魚早期胚胎發育的過程中,Wnt訊息傳遞路徑參與體軸形成的調控,在maternal時期會調控背-腹側體軸生成,在zygotic時期則是會調控前-後側體軸生成。在人類的癌症研究中發現Myc基因位於Wnt訊息傳遞路徑的下游,受Wnt訊息傳遞路徑所調控。Mych基因為Myc基因家族的一員,在先前的研究中發現斑馬魚mych基因在胚胎發育過程中會影響神經嵴的存活,但並未分析mych基因的5’未轉譯序列的作用,且未探討mych基因對體軸發育的影響,因此本研究想探討斑馬魚mych基因5’未轉譯序列的作用及mych基因對體軸發育的影響。在本研究中發現斑馬魚mych基因有兩種不同形式的mRNA,分別為mych-001及mych-002,此兩種形式的mRNA只在5’未轉譯序列有所不同,但從實驗結果卻發現mych-002 mRNA的轉譯效率要比mych-001 mRNA高上許多。從全胚胎原位雜交及reporter assay的結果則發現mych基因參與在Wnt訊息傳遞路徑中,並藉由影響ved、vent、vox基因的表現調控背-腹側體軸生成,當mych基因過度表現會造成胚胎腹側化,mych基因表現受抑制則會造成胚胎背側化。

    In vertebrates, body axis formed during early embryogenesis. According to the earlier studies, Wnt signaling pathway controls dorsal-ventral body axis in blastrula and controls anterior-posterior body axis in gastrula. In human, Myc gene is at down stream of Wnt signaling pathway and the product of Myc gene is a transcription factor that involved in regulating many cell functions including cell proliferation or cell cycle progression. In previous study, Dawid’s lab has found that in zebrafish, the mych (myc homolog) gene play an important role in controlling early neuron precursor cell development that are related to anterior neural tissue formation. However, the detail mechanism of how mych regulates the body asymmetry is still not totally analyzed. In the present study, we found two mRNA transcript of mych, mych-001 and mych-002 in the zebrafish genome. Mych-001 and mych-002 different in their 5’UTR region sequence when mych-001 is maternally expressed and mych-002 is zygotically expressed. But they have the same expression region. Overexpress mych cause embryo posteriorization or ventrolization, but knockdown mych cause embryo dorsalization, which is similar to bmp knockdown morphant. To clarify wether mych involves in Wnt signaling pathway or bmp signaling pathway, we performed report assay. The report assay shows mych may involves in Wnt signaling pathway and knockdown mych down-regulated wnt target gene axin2 also confirmed this result. Mych overexpression make ved, vent and vox expression area enlarged and ved, vent, vox inhibited chd expression thus cause embryo ventrolized. Knocking down mych reduced ved, vent and vox expression area and chd expression area enlarged cause embryo drosalized.

    目錄 中文摘要........................................................................................................... I 英文摘要......................................................................................................... II 誌謝................................................................................................................ VI 目錄............................................................................................................... VII 表目錄............................................................................................................. X 圖目錄............................................................................................................ XI 縮寫表......................................................................................................... XIII 一、研究背景................................................................................................... 1 1-1 實驗動物斑馬魚............................................................................ 1 1-2 Wnt訊息傳遞路徑........................................................................ 4 1-3 Mych基因以及在斑馬魚中的研究.............................................. 8 1-4 研究目的........................................................................................ 8 二、材料與方法............................................................................................. 10 2-1 斑馬魚飼養及魚卵的取得.......................................................... 10 2-2 RNA萃取及cDNA合成............................................................ 10 2-3 質體構築...................................................................................... 12 2-4 勝任細胞製備.............................................................................. 13 2-5 轉型作用...................................................................................... 14 2-6 質體純化...................................................................................... 14 2-7 mRNA合成................................................................................. 15 2-8 morpholino配置……………………………………….………. 17 2-9 顯微注射...................................................................................... 17 2-10 胚胎收集...................................................................................... 17 2-11 原位雜交探針合成...................................................................... 17 2-12 全胚胎原位雜交.......................................................................... 18 2-13 雙色全胚胎原位雜交.................................................................. 20 2-14 Reporter Assay............................................................................. 21 2-15 5’未轉譯區域對基因表現強度測量.......................................... 22 三、結果........................................................................................................ 24 3-1 斑馬魚mych基因核苷酸定序.................................................... 24 3-2 Mych基因表現時期及表現位置…………................................ 24 3-3 不同5’未轉譯區域序列對基因表現的影響............................. 25 3-4 Mych-002對體軸發育的影響.................................................... 26 四、討論........................................................................................................ 36 4-1 Mych基因的表現時間及表現位置之探討…………............ 36 4-2 5’未轉譯區域對基因表現的影響………..……...……………. 37 4-3 Mych基因在胚胎發育過程中對體軸形成所扮演的角色........ 38 4-4 Mych基因在Wnt訊息傳遞路徑裡的角色............................... 39 4-5 總結.............................................................................................. 40 參考文獻........................................................................................................ 41 圖表................................................................................................................ 48 附錄................................................................................................................ 73

    參考文獻
    Barman, R. P. Danio rerio. A taxonomic revision of the Indo-Burmese species of Danio rerio. Zoological Survey of India, India, 1-9, 1991.

    Babendure, J. R., Babendure, J. L., Ding, J. H.,and Tsien, R.Y. Control of mammalian translation by mRNA structure near caps. RNA 12, 851-861, 2006.

    Bhanot, P., Brink, M., Samos, C. H., Hsieh, J. C., Wang, Y., Macke, J. P., Andrew, D., Nathans, J., and Nusse, R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225-230, 1996.

    Bhat, A. Diversity and Composition of Freshwater Fishes in River Systems of Central Western Ghats, India. Environmental Biology of Fishes 68, 25-38, 2003.

    Bicknell A. A., Cenik, C., Chua, H. N., Roth, F. P., Moore, M. J. Introns in UTRs: why we should stop ignoring them. Bioessays 34, 1025-1034, 2012.

    Chen, E. Y., DeRan, M. T., Ignatius, M. S., Grandinetti, K. B., Clagg, R., McCarthy, K. M., Lobbardi, R. M., Brockmann, J., Keller, C., Wu, X., and Langenau, D. M. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/beta-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America 111, 5349-5354, 2014.

    Circ ResJohnstone, T. G., Bazzini, A. A., and Giraldez, A. J. Upstream ORFs are prevalent translational repressors in vertebrates. The European Molecular Biology Organization Journal 35, 706-723, 2016.

    Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Molecular and Cellular Biology 19, 1-11, 1999.

    Driever, W., Solnica-Krezel, L., Schier, A. F., Neuhauss, S. C., Malicki, J., Stemple, D. L., Stainier, D. Y., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., and Boggs, C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37-46, 1996.

    Eisen, J. S., and Smith, J. C. Controlling morpholino experiments: don't stop making antisense. Development 135, 1735-1743, 2008.

    Fekany-Lee, K., Gonzalez, E., Miller-Bertoglio, V., and Solnica-Krezel, L. The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127, 2333-2345, 2000.

    Fekany, K., Yamanaka, Y., Leung, T., Sirotkin, H. I., Topczewski, J., Gates, M. A., Hibi, M., Renucci, A., Stemple, D., Radbill, A., Schier, A. F., Driever, W., Hirano, T., Talbot, W. S., and Solnica-Krezel, L. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126, 1427-1438, 1999.

    Gerhard, G. S., Kauffman, E. J., Wang, X., Stewart, R., Moore, J.L., Kasales, C. J., Demidenko, E., and Cheng, K.C. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Experimental Gerontology 37, 1055-1068, 2002.

    Gu, X., Xu, F., Wang, X., Gao, X., and Zhao, Q. Molecular cloning and expression of a novel CYP26 gene (cyp26d1) during zebrafish early development. Gene Expression Patterns 5, 733-739, 2005.

    Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D. A., Odenthal, J., van Eeden, F. J., Jiang, Y. J., Heisenberg, C. P., Kelsh, R. N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nusslein-Volhard, C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36, 1996.

    Harland, R., and Gerhart, J. Formation and function of Spemann's organizer. Annual Review of Cell and Developmental Biology 13, 611-667, 1997.

    He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P.J., Vogelstein, B., and Kinzler, K.W. Identification of c-MYC as a target of the APC pathway. Science 281, 1509-1512, 1998.

    Hemilton, F. Gangetic Fishes. An account of the fishes found in the river Ganges and its branches, Archibald Constable and Company, 321-323,1822.

    Hong, S. K., Tsang, M., and Dawid, I. B. The mych gene is required for neural crest survival during zebrafish development. PLoS One 3, e2029, 2008.

    Inoue, H., Nojima, H., and Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23-28, 1990.

    Jesuthasan, S., and Stahle, U. Dynamic microtubules and specification of the zebrafish embryonic axis. Current Biology 7, 31-42, 1997.

    Kane D. A. and Kimmel C. B. The zebrafish midblastrula transition. Development 119, 447-456, 1993.

    Kawahara, A., Wilm, T., Solnica-Krezel, L., and Dawid, I. B. Functional interaction of vega2 and goosecoid homeobox genes in zebrafish. Genesis 28, 58-67, 2000.

    Kelly, C., Chin, A. J., Leatherman, J. L., Kozlowski, D. J., and Weinberg, E. S. Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127, 3899-3911, 2000.

    Kim, C. H., Oda, T., Itoh, M., Jiang, D., Artinger, K. B., Chandrasekharappa, S.C., Driever, W., and Chitnis, A.B. Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913-916, 2000.

    Kimmel, C. B. Genetics and early development of zebrafish. Trends in Genetics 5, 283-288, 1989.

    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253-310, 1995.

    Kimmel, C. B., Warga, R. M., and Schilling, T. F. Origin and organization of the zebrafish fate map. Development 108, 581-594, 1990.

    Komiya, Y., and Habas, R. Wnt signal transduction pathways. Organogenesis 4, 68-75, 2008.

    Kotkamp, K., Kur, E., Wendik, B., Polok, B. K., Ben-Dor, S., Onichtchouk, D., and Driever, W. Pou5f1/Oct4 promotes cell survival via direct activation of mych expression during zebrafish gastrulation. PLoS One 9, e92356, 2014.

    Laale, H. W. The biology and use of zebrafish, Brachydanio rerio in fisheries research. Journal of Fish Biology 10, 121-173, 1977.

    Leichsenring, M., Maes, J., Mössner, R., Driever, W., and Onichtchouk, D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341, 1005-1009, 2013.

    Lekven, A. C., Thorpe, C. J., Waxman, J. S., and Moon, R. T. Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Developmental Cell 1, 103-114, 2001.

    Leung, J. Y., Kolligs, F. T., Wu, R., Zhai, Y., Kuick, R., Hanash, S., Cho, K. R., and Fearon, E.R. Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. The Journal of Biological Chemistry 277, 21657-21665, 2002.

    Long, Q., Meng, A., Wang, H., Jessen, J. R., Farrell, M. J., and Lin, S. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development 124, 4105-4111, 1997.

    Lu, F. I., Sun, Y. H., Wei, C. Y., Thisse, C., and Thisse, B. Tissue-specific derepression of TCF/LEF controls the activity of the Wnt/beta-catenin pathway. Nature Communications 5, 53-68, 2014.

    Lu, F. I., Thisse, C., and Thisse, B. Identification and mechanism of regulation of the zebrafish dorsal determinant. Proceedings of the National Academy of Sciences of the United States of America 108, 15876-15880, 2011.

    Meijer, L., Skaltsounis, A. L., Magiatis, P., Polychronopoulos, P., Knockaert, M., Leost, M., Ryan, X.P., Vonica, C. A., Brivanlou, A., Dajani, R., Crovace, C., Tarricone, C., Musacchio, A., Roe, S. M., Pearl, L., and Greengard, P. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chemistry and Biology 10, 1255-1266, 2003.

    Melby, A. E., Beach, C., Mullins, M., and Kimelman, D. Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Developmental Biology 224, 275-285, 2000.

    Meyer, N., Kim, S. S., and Penn, L. Z. The Oscar-worthy role of Myc in apoptosis. Seminars in Cancer Biology 16, 275-287, 2006.

    Mizuno, T., Yamaha, E., Kuroiwa, A., and Takeda, H. Removal of vegetal yolk causes dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mechanisms of Development 81, 51-63, 1999.

    Nasevicius, A., and Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genetics 26, 216-220, 2000.

    Nojima, H., Shimizu, T., Kim, C. H., Yabe, T., Bae, Y. K., Muraoka, O., Hirata, T., Chitnis, A., Hirano, T., and Hibi, M. Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mechanisms of Development 121, 371-386, 2004.

    Nusse, R., van Ooyen, A., Cox, D., Fung, Y. K., and Varmus, H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307, 131-136, 1984.

    Peterson, S. M., and Freeman, J. L. RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. Journal of Visualized Experiments, 2009.

    Piccolo, S., Sasai, Y., Lu, B., and De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589-598, 1996.

    Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., and Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535-538, 2000.

    Ramel, M. C., Buckles, G. R., Baker, K. D., and Lekven, A. C. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Developmental Biology 287, 237-248, 2005.

    Ramel, M. C., and Lekven, A. C. Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131, 3991-4000, 2004.

    Rao, T. P., and Kuhl, M. An updated overview on Wnt signaling pathways: a prelude for more. Circulation Research 106, 1798-1806, 2010.

    Regadas, I., Matos, M. R., Monteiro, F. A., Gomez-Skarmeta, J. L., Lima, D., Bessa, J., Casares, F., and Reguenga, C. Several cis-regulatory elements control mRNA stability, translation efficiency, and expression pattern of Prrxl1 (paired related homeobox protein-like 1). The Journal of Biological Chemistry 288, 36285-36301, 2013.

    Sharma, R. P. Wingless a new mutant in Drosophila melanogaster. Drosophila Information Service 50, 134, 1973.

    Shimizu, T., Yamanaka, Y., Nojima, H., Yabe, T., Hibi, M., and Hirano, T. A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mechanisms of Development 118, 125-138, 2002.

    Solomon, K. S., Logsdon, J. M., Jr., and Fritz, A. Expression and phylogenetic analyses of three zebrafish FoxI class genes. Developmental Dynamics 228, 301-307, 2003.

    Spence, R., Fatema, M. K., Ellis, S., Ahmed, Z. F., and Smith, C. Diet, growth and recruitment of wild zebrafish in Bangladesh. Journal of Fish Biology 71, 304-309, 2007.

    Spence, R., Gerlach, G., Lawrence, C., and Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biological Reviews of the Cambridge Philosophical Society 83, 13-34, 2008.

    Spence, R., Reichard, M., Smith, C., Fatema, M. K., Wahab, M. A., Ahmed, Z.F., Reichard, M., and Huq, K. A. The distribution and habitat preferences of the zebrafish in Bangladesh. Journal of Fish Biology 69,1435-1448, 2006.

    Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296, 1981.

    Tansey, W. P. Mammalian MYC Proteins and Cancer. New Journal of Science 2014, 1-27, 2014.

    Thisse, C., and Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols 3, 59-69, 2008.

    von Bubnoff, A., and Cho, K. W. Intracellular BMP signaling regulation in vertebrates: pathway or network? Developmental Biology 239, 1-14, 2001.

    Weidinger, G., Thorpe, C. J., Wuennenberg-Stapleton, K., Ngai, J., and Moon, R.T. The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning. Current Biology 15, 489-500, 2005.

    Westerfield, M. General Methods for Zebrafish Care. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. University of Oregon Press, Eugene, 13-27, 2000.

    Wylie, A. D., Fleming, J. A., Whitener, A. E., and Lekven, A. C. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development. Developmental Biology 386, 53-63, 2014.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE